HomeHome Intuitionistic Logic Explorer
Theorem List (p. 31 of 95)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3001-3100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrexss 3001* Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(AB → (x A φx B (x A φ)))
 
Theoremss2ab 3002 Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
({xφ} ⊆ {xψ} ↔ x(φψ))
 
Theoremabss 3003* Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
({xφ} ⊆ Ax(φx A))
 
Theoremssab 3004* Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
(A ⊆ {xφ} ↔ x(x Aφ))
 
Theoremssabral 3005* The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
(A ⊆ {xφ} ↔ x A φ)
 
Theoremss2abi 3006 Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
(φψ)       {xφ} ⊆ {xψ}
 
Theoremss2abdv 3007* Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.)
(φ → (ψχ))       (φ → {xψ} ⊆ {xχ})
 
Theoremabssdv 3008* Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
(φ → (ψx A))       (φ → {xψ} ⊆ A)
 
Theoremabssi 3009* Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
(φx A)       {xφ} ⊆ A
 
Theoremss2rab 3010 Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
({x Aφ} ⊆ {x Aψ} ↔ x A (φψ))
 
Theoremrabss 3011* Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
({x Aφ} ⊆ Bx A (φx B))
 
Theoremssrab 3012* Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
(B ⊆ {x Aφ} ↔ (BA x B φ))
 
Theoremssrabdv 3013* Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 31-Aug-2006.)
(φBA)    &   ((φ x B) → ψ)       (φB ⊆ {x Aψ})
 
Theoremrabssdv 3014* Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 2-Feb-2015.)
((φ x A ψ) → x B)       (φ → {x Aψ} ⊆ B)
 
Theoremss2rabdv 3015* Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.)
((φ x A) → (ψχ))       (φ → {x Aψ} ⊆ {x Aχ})
 
Theoremss2rabi 3016 Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.)
(x A → (φψ))       {x Aφ} ⊆ {x Aψ}
 
Theoremrabss2 3017* Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(AB → {x Aφ} ⊆ {x Bφ})
 
Theoremssab2 3018* Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
{x ∣ (x A φ)} ⊆ A
 
Theoremssrab2 3019* Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997.)
{x Aφ} ⊆ A
 
Theoremssrabeq 3020* If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
(𝑉 ⊆ {x 𝑉φ} ↔ 𝑉 = {x 𝑉φ})
 
Theoremrabssab 3021 A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
{x Aφ} ⊆ {xφ}
 
Theoremuniiunlem 3022* A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
(x A B 𝐷 → (x A B 𝐶 ↔ {yx A y = B} ⊆ 𝐶))
 
Theoremdfpss2 3023 Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.)
(AB ↔ (AB ¬ A = B))
 
Theoremdfpss3 3024 Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(AB ↔ (AB ¬ BA))
 
Theorempsseq1 3025 Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
(A = B → (A𝐶B𝐶))
 
Theorempsseq2 3026 Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
(A = B → (𝐶A𝐶B))
 
Theorempsseq1i 3027 An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
A = B       (A𝐶B𝐶)
 
Theorempsseq2i 3028 An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
A = B       (𝐶A𝐶B)
 
Theorempsseq12i 3029 An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
A = B    &   𝐶 = 𝐷       (A𝐶B𝐷)
 
Theorempsseq1d 3030 An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
(φA = B)       (φ → (A𝐶B𝐶))
 
Theorempsseq2d 3031 An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
(φA = B)       (φ → (𝐶A𝐶B))
 
Theorempsseq12d 3032 An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
(φA = B)    &   (φ𝐶 = 𝐷)       (φ → (A𝐶B𝐷))
 
Theorempssss 3033 A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
(ABAB)
 
Theorempssne 3034 Two classes in a proper subclass relationship are not equal. (Contributed by NM, 16-Feb-2015.)
(ABAB)
 
Theorempssssd 3035 Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
(φAB)       (φAB)
 
Theorempssned 3036 Proper subclasses are unequal. Deduction form of pssne 3034. (Contributed by David Moews, 1-May-2017.)
(φAB)       (φAB)
 
Theoremsspssr 3037 Subclass in terms of proper subclass. (Contributed by Jim Kingdon, 16-Jul-2018.)
((AB A = B) → AB)
 
Theorempssirr 3038 Proper subclass is irreflexive. Theorem 7 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
¬ AA
 
Theorempssn2lp 3039 Proper subclass has no 2-cycle loops. Compare Theorem 8 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
¬ (AB BA)
 
Theoremsspsstrir 3040 Two ways of stating trichotomy with respect to inclusion. (Contributed by Jim Kingdon, 16-Jul-2018.)
((AB A = B BA) → (AB BA))
 
Theoremssnpss 3041 Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(AB → ¬ BA)
 
Theoremsspssn 3042 Like pssn2lp 3039 but for subset and proper subset. (Contributed by Jim Kingdon, 17-Jul-2018.)
¬ (AB BA)
 
Theorempsstr 3043 Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
((AB B𝐶) → A𝐶)
 
Theoremsspsstr 3044 Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
((AB B𝐶) → A𝐶)
 
Theorempsssstr 3045 Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
((AB B𝐶) → A𝐶)
 
Theorempsstrd 3046 Proper subclass inclusion is transitive. Deduction form of psstr 3043. (Contributed by David Moews, 1-May-2017.)
(φAB)    &   (φB𝐶)       (φA𝐶)
 
Theoremsspsstrd 3047 Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 3044. (Contributed by David Moews, 1-May-2017.)
(φAB)    &   (φB𝐶)       (φA𝐶)
 
Theorempsssstrd 3048 Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 3045. (Contributed by David Moews, 1-May-2017.)
(φAB)    &   (φB𝐶)       (φA𝐶)
 
2.1.13  The difference, union, and intersection of two classes
 
2.1.13.1  The difference of two classes
 
Theoremdifeq1 3049 Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(A = B → (A𝐶) = (B𝐶))
 
Theoremdifeq2 3050 Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(A = B → (𝐶A) = (𝐶B))
 
Theoremdifeq12 3051 Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.)
((A = B 𝐶 = 𝐷) → (A𝐶) = (B𝐷))
 
Theoremdifeq1i 3052 Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
A = B       (A𝐶) = (B𝐶)
 
Theoremdifeq2i 3053 Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
A = B       (𝐶A) = (𝐶B)
 
Theoremdifeq12i 3054 Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
A = B    &   𝐶 = 𝐷       (A𝐶) = (B𝐷)
 
Theoremdifeq1d 3055 Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
(φA = B)       (φ → (A𝐶) = (B𝐶))
 
Theoremdifeq2d 3056 Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
(φA = B)       (φ → (𝐶A) = (𝐶B))
 
Theoremdifeq12d 3057 Equality deduction for class difference. (Contributed by FL, 29-May-2014.)
(φA = B)    &   (φ𝐶 = 𝐷)       (φ → (A𝐶) = (B𝐷))
 
Theoremdifeqri 3058* Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((x A ¬ x B) ↔ x 𝐶)       (AB) = 𝐶
 
Theoremnfdif 3059 Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
xA    &   xB       x(AB)
 
Theoremeldifi 3060 Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
(A (B𝐶) → A B)
 
Theoremeldifn 3061 Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
(A (B𝐶) → ¬ A 𝐶)
 
Theoremelndif 3062 A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.)
(A B → ¬ A (𝐶B))
 
Theoremdifdif 3063 Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
(A ∖ (BA)) = A
 
Theoremdifss 3064 Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
(AB) ⊆ A
 
Theoremdifssd 3065 A difference of two classes is contained in the minuend. Deduction form of difss 3064. (Contributed by David Moews, 1-May-2017.)
(φ → (AB) ⊆ A)
 
Theoremdifss2 3066 If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
(A ⊆ (B𝐶) → AB)
 
Theoremdifss2d 3067 If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 3066. (Contributed by David Moews, 1-May-2017.)
(φA ⊆ (B𝐶))       (φAB)
 
Theoremssdifss 3068 Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
(AB → (A𝐶) ⊆ B)
 
Theoremddifnel 3069* Double complement under universal class. The hypothesis is one way of expressing the idea that membership in A is decidable. Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that A is a subset of V ∖ (V ∖ A), see ddifss 3169. (Contributed by Jim Kingdon, 21-Jul-2018.)
x (V ∖ A) → x A)       (V ∖ (V ∖ A)) = A
 
Theoremssconb 3070 Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.)
((A𝐶 B𝐶) → (A ⊆ (𝐶B) ↔ B ⊆ (𝐶A)))
 
Theoremsscon 3071 Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
(AB → (𝐶B) ⊆ (𝐶A))
 
Theoremssdif 3072 Difference law for subsets. (Contributed by NM, 28-May-1998.)
(AB → (A𝐶) ⊆ (B𝐶))
 
Theoremssdifd 3073 If A is contained in B, then (A𝐶) is contained in (B𝐶). Deduction form of ssdif 3072. (Contributed by David Moews, 1-May-2017.)
(φAB)       (φ → (A𝐶) ⊆ (B𝐶))
 
Theoremsscond 3074 If A is contained in B, then (𝐶B) is contained in (𝐶A). Deduction form of sscon 3071. (Contributed by David Moews, 1-May-2017.)
(φAB)       (φ → (𝐶B) ⊆ (𝐶A))
 
Theoremssdifssd 3075 If A is contained in B, then (A𝐶) is also contained in B. Deduction form of ssdifss 3068. (Contributed by David Moews, 1-May-2017.)
(φAB)       (φ → (A𝐶) ⊆ B)
 
Theoremssdif2d 3076 If A is contained in B and 𝐶 is contained in 𝐷, then (A𝐷) is contained in (B𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.)
(φAB)    &   (φ𝐶𝐷)       (φ → (A𝐷) ⊆ (B𝐶))
 
Theoremraldifb 3077 Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
(x A (xBφ) ↔ x (AB)φ)
 
2.1.13.2  The union of two classes
 
Theoremelun 3078 Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.)
(A (B𝐶) ↔ (A B A 𝐶))
 
Theoremuneqri 3079* Inference from membership to union. (Contributed by NM, 5-Aug-1993.)
((x A x B) ↔ x 𝐶)       (AB) = 𝐶
 
Theoremunidm 3080 Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
(AA) = A
 
Theoremuncom 3081 Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(AB) = (BA)
 
Theoremequncom 3082 If a class equals the union of two other classes, then it equals the union of those two classes commuted. (Contributed by Alan Sare, 18-Feb-2012.)
(A = (B𝐶) ↔ A = (𝐶B))
 
Theoremequncomi 3083 Inference form of equncom 3082. (Contributed by Alan Sare, 18-Feb-2012.)
A = (B𝐶)       A = (𝐶B)
 
Theoremuneq1 3084 Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.)
(A = B → (A𝐶) = (B𝐶))
 
Theoremuneq2 3085 Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.)
(A = B → (𝐶A) = (𝐶B))
 
Theoremuneq12 3086 Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.)
((A = B 𝐶 = 𝐷) → (A𝐶) = (B𝐷))
 
Theoremuneq1i 3087 Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.)
A = B       (A𝐶) = (B𝐶)
 
Theoremuneq2i 3088 Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
A = B       (𝐶A) = (𝐶B)
 
Theoremuneq12i 3089 Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
A = B    &   𝐶 = 𝐷       (A𝐶) = (B𝐷)
 
Theoremuneq1d 3090 Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
(φA = B)       (φ → (A𝐶) = (B𝐶))
 
Theoremuneq2d 3091 Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
(φA = B)       (φ → (𝐶A) = (𝐶B))
 
Theoremuneq12d 3092 Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(φA = B)    &   (φ𝐶 = 𝐷)       (φ → (A𝐶) = (B𝐷))
 
Theoremnfun 3093 Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
xA    &   xB       x(AB)
 
Theoremunass 3094 Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((AB) ∪ 𝐶) = (A ∪ (B𝐶))
 
Theoremun12 3095 A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
(A ∪ (B𝐶)) = (B ∪ (A𝐶))
 
Theoremun23 3096 A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((AB) ∪ 𝐶) = ((A𝐶) ∪ B)
 
Theoremun4 3097 A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
((AB) ∪ (𝐶𝐷)) = ((A𝐶) ∪ (B𝐷))
 
Theoremunundi 3098 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
(A ∪ (B𝐶)) = ((AB) ∪ (A𝐶))
 
Theoremunundir 3099 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
((AB) ∪ 𝐶) = ((A𝐶) ∪ (B𝐶))
 
Theoremssun1 3100 Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
A ⊆ (AB)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9427
  Copyright terms: Public domain < Previous  Next >