![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss2ab | GIF version |
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.) |
Ref | Expression |
---|---|
ss2ab | ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2180 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | nfab1 2180 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
3 | 1, 2 | dfss2f 2936 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓})) |
4 | abid 2028 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
5 | abid 2028 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
6 | 4, 5 | imbi12i 228 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 → 𝜓)) |
7 | 6 | albii 1359 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | bitri 173 | 1 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wal 1241 ∈ wcel 1393 {cab 2026 ⊆ wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-in 2924 df-ss 2931 |
This theorem is referenced by: abss 3009 ssab 3010 ss2abi 3012 ss2abdv 3013 ss2rab 3016 rabss2 3023 iotanul 4882 iotass 4884 |
Copyright terms: Public domain | W3C validator |