![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ddifnel | GIF version |
Description: Double complement under universal class. The hypothesis is one way of expressing the idea that membership in 𝐴 is decidable. Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that 𝐴 is a subset of V ∖ (V ∖ 𝐴), see ddifss 3175. (Contributed by Jim Kingdon, 21-Jul-2018.) |
Ref | Expression |
---|---|
ddifnel.1 | ⊢ (¬ 𝑥 ∈ (V ∖ 𝐴) → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
ddifnel | ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ddifnel.1 | . . . 4 ⊢ (¬ 𝑥 ∈ (V ∖ 𝐴) → 𝑥 ∈ 𝐴) | |
2 | 1 | adantl 262 | . . 3 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) → 𝑥 ∈ 𝐴) |
3 | elndif 3068 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ (V ∖ 𝐴)) | |
4 | vex 2560 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | jctil 295 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴))) |
6 | 2, 5 | impbii 117 | . 2 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴) |
7 | 6 | difeqri 3064 | 1 ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 Vcvv 2557 ∖ cdif 2914 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |