Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12i GIF version

Theorem uneq12i 3095
 Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
uneq1i.1 𝐴 = 𝐵
uneq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
uneq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem uneq12i
StepHypRef Expression
1 uneq1i.1 . 2 𝐴 = 𝐵
2 uneq12i.2 . 2 𝐶 = 𝐷
3 uneq12 3092 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 402 1 (𝐴𝐶) = (𝐵𝐷)
 Colors of variables: wff set class Syntax hints:   = wceq 1243   ∪ cun 2915 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922 This theorem is referenced by:  indir  3186  difundir  3190  symdif1  3202  unrab  3208  rabun2  3216  dfif6  3333  dfif3  3343  unopab  3836  xpundi  4396  xpundir  4397  xpun  4401  dmun  4542  resundi  4625  resundir  4626  cnvun  4729  rnun  4732  imaundi  4736  imaundir  4737  dmtpop  4796  coundi  4822  coundir  4823  unidmrn  4850  dfdm2  4852  mptun  5029  fpr  5345  fvsnun2  5361  fzo0to42pr  9076
 Copyright terms: Public domain W3C validator