ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2i Structured version   GIF version

Theorem uneq2i 3088
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
uneq1i.1 A = B
Assertion
Ref Expression
uneq2i (𝐶A) = (𝐶B)

Proof of Theorem uneq2i
StepHypRef Expression
1 uneq1i.1 . 2 A = B
2 uneq2 3085 . 2 (A = B → (𝐶A) = (𝐶B))
31, 2ax-mp 7 1 (𝐶A) = (𝐶B)
Colors of variables: wff set class
Syntax hints:   = wceq 1242  cun 2909
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916
This theorem is referenced by:  un4  3097  unundir  3099  difun2  3296  difdifdirss  3301  qdass  3458  qdassr  3459  unisuc  4116  iunsuc  4123  fmptap  5296  fvsnun1  5303  rdgival  5909  rdg0  5914
  Copyright terms: Public domain W3C validator