![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssrab2 | GIF version |
Description: Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
ssrab2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2315 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | ssab2 3024 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 2975 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ∈ wcel 1393 {cab 2026 {crab 2310 ⊆ wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rab 2315 df-in 2924 df-ss 2931 |
This theorem is referenced by: ssrabeq 3026 rabexg 3900 pwnss 3912 onintrab2im 4244 ordtriexmidlem 4245 ontr2exmid 4250 ordtri2or2exmidlem 4251 onsucsssucexmid 4252 onsucelsucexmidlem 4254 tfis 4306 nnregexmid 4342 dmmptss 4817 ssimaex 5234 f1oresrab 5329 riotacl 5482 ssfiexmid 6336 genpelxp 6609 ltexprlempr 6706 cauappcvgprlemcl 6751 cauappcvgprlemladd 6756 caucvgprlemcl 6774 caucvgprprlemcl 6802 uzf 8476 rpre 8589 ixxf 8767 fzf 8878 serige0 9252 expcl2lemap 9267 expclzaplem 9279 expge0 9291 expge1 9292 bdrabexg 10026 |
Copyright terms: Public domain | W3C validator |