ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pssirr Structured version   GIF version

Theorem pssirr 3038
Description: Proper subclass is irreflexive. Theorem 7 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
pssirr ¬ AA

Proof of Theorem pssirr
StepHypRef Expression
1 pm3.24 626 . 2 ¬ (AA ¬ AA)
2 dfpss3 3024 . 2 (AA ↔ (AA ¬ AA))
31, 2mtbir 595 1 ¬ AA
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   wa 97  wss 2911  wpss 2912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-ne 2203  df-in 2918  df-ss 2925  df-pss 2927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator