![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sspssn | GIF version |
Description: Like pssn2lp 3045 but for subset and proper subset. (Contributed by Jim Kingdon, 17-Jul-2018.) |
Ref | Expression |
---|---|
sspssn | ⊢ ¬ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 627 | . 2 ⊢ ¬ (𝐵 ⊊ 𝐴 ∧ ¬ 𝐵 ⊊ 𝐴) | |
2 | ssnpss 3047 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ⊊ 𝐴) | |
3 | 2 | anim2i 324 | . . 3 ⊢ ((𝐵 ⊊ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ⊊ 𝐴 ∧ ¬ 𝐵 ⊊ 𝐴)) |
4 | 3 | ancoms 255 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴) → (𝐵 ⊊ 𝐴 ∧ ¬ 𝐵 ⊊ 𝐴)) |
5 | 1, 4 | mto 588 | 1 ⊢ ¬ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 97 ⊆ wss 2917 ⊊ wpss 2918 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-ne 2206 df-in 2924 df-ss 2931 df-pss 2933 |
This theorem is referenced by: sspsstr 3050 psssstr 3051 |
Copyright terms: Public domain | W3C validator |