Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sspsstrir | GIF version |
Description: Two ways of stating trichotomy with respect to inclusion. (Contributed by Jim Kingdon, 16-Jul-2018.) |
Ref | Expression |
---|---|
sspsstrir | ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssss 3039 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | orcd 652 | . 2 ⊢ (𝐴 ⊊ 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
3 | eqimss 2997 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
4 | 3 | orcd 652 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
5 | pssss 3039 | . . 3 ⊢ (𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴) | |
6 | 5 | olcd 653 | . 2 ⊢ (𝐵 ⊊ 𝐴 → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
7 | 2, 4, 6 | 3jaoi 1198 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 629 ∨ w3o 884 = wceq 1243 ⊆ wss 2917 ⊊ wpss 2918 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 df-pss 2933 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |