HomeHome Intuitionistic Logic Explorer
Theorem List (p. 31 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3001-3100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnssne1 3001 Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
 |-  ( ( A  C_  B  /\  -.  A  C_  C )  ->  B  =/=  C )
 
Theoremnssne2 3002 Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.)
 |-  ( ( A  C_  C  /\  -.  B  C_  C )  ->  A  =/=  B )
 
Theoremnssr 3003* Negation of subclass relationship. One direction of Exercise 13 of [TakeutiZaring] p. 18. (Contributed by Jim Kingdon, 15-Jul-2018.)
 |-  ( E. x ( x  e.  A  /\  -.  x  e.  B ) 
 ->  -.  A  C_  B )
 
Theoremssralv 3004* Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.)
 |-  ( A  C_  B  ->  ( A. x  e.  B  ph  ->  A. x  e.  A  ph ) )
 
Theoremssrexv 3005* Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
 |-  ( A  C_  B  ->  ( E. x  e.  A  ph  ->  E. x  e.  B  ph ) )
 
Theoremralss 3006* Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
 |-  ( A  C_  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ( x  e.  A  -> 
 ph ) ) )
 
Theoremrexss 3007* Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
 |-  ( A  C_  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ( x  e.  A  /\  ph ) ) )
 
Theoremss2ab 3008 Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
 |-  ( { x  |  ph
 }  C_  { x  |  ps }  <->  A. x ( ph  ->  ps ) )
 
Theoremabss 3009* Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
 |-  ( { x  |  ph
 }  C_  A  <->  A. x ( ph  ->  x  e.  A ) )
 
Theoremssab 3010* Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
 |-  ( A  C_  { x  |  ph }  <->  A. x ( x  e.  A  ->  ph )
 )
 
Theoremssabral 3011* The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
 |-  ( A  C_  { x  |  ph }  <->  A. x  e.  A  ph )
 
Theoremss2abi 3012 Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
 |-  ( ph  ->  ps )   =>    |-  { x  |  ph }  C_  { x  |  ps }
 
Theoremss2abdv 3013* Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  { x  |  ps }  C_ 
 { x  |  ch } )
 
Theoremabssdv 3014* Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
 |-  ( ph  ->  ( ps  ->  x  e.  A ) )   =>    |-  ( ph  ->  { x  |  ps }  C_  A )
 
Theoremabssi 3015* Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
 |-  ( ph  ->  x  e.  A )   =>    |- 
 { x  |  ph } 
 C_  A
 
Theoremss2rab 3016 Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
 |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps }  <->  A. x  e.  A  ( ph  ->  ps )
 )
 
Theoremrabss 3017* Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
 |-  ( { x  e.  A  |  ph }  C_  B 
 <-> 
 A. x  e.  A  ( ph  ->  x  e.  B ) )
 
Theoremssrab 3018* Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
 |-  ( B  C_  { x  e.  A  |  ph }  <->  ( B  C_  A  /\  A. x  e.  B  ph ) )
 
Theoremssrabdv 3019* Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 31-Aug-2006.)
 |-  ( ph  ->  B  C_  A )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ps )   =>    |-  ( ph  ->  B  C_ 
 { x  e.  A  |  ps } )
 
Theoremrabssdv 3020* Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 2-Feb-2015.)
 |-  ( ( ph  /\  x  e.  A  /\  ps )  ->  x  e.  B )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  C_  B )
 
Theoremss2rabdv 3021* Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  C_  { x  e.  A  |  ch }
 )
 
Theoremss2rabi 3022 Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.)
 |-  ( x  e.  A  ->  ( ph  ->  ps )
 )   =>    |- 
 { x  e.  A  |  ph }  C_  { x  e.  A  |  ps }
 
Theoremrabss2 3023* Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  ->  { x  e.  A  |  ph }  C_  { x  e.  B  |  ph } )
 
Theoremssab2 3024* Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
 |- 
 { x  |  ( x  e.  A  /\  ph ) }  C_  A
 
Theoremssrab2 3025* Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997.)
 |- 
 { x  e.  A  |  ph }  C_  A
 
Theoremssrabeq 3026* If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
 |-  ( V  C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph
 } )
 
Theoremrabssab 3027 A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |- 
 { x  e.  A  |  ph }  C_  { x  |  ph }
 
Theoremuniiunlem 3028* A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
 |-  ( A. x  e.  A  B  e.  D  ->  ( A. x  e.  A  B  e.  C  <->  { y  |  E. x  e.  A  y  =  B }  C_  C ) )
 
Theoremdfpss2 3029 Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.)
 |-  ( A  C.  B  <->  ( A  C_  B  /\  -.  A  =  B ) )
 
Theoremdfpss3 3030 Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C.  B  <->  ( A  C_  B  /\  -.  B  C_  A ) )
 
Theorempsseq1 3031 Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
 |-  ( A  =  B  ->  ( A  C.  C  <->  B  C.  C ) )
 
Theorempsseq2 3032 Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
 |-  ( A  =  B  ->  ( C  C.  A  <->  C  C.  B ) )
 
Theorempsseq1i 3033 An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
 |-  A  =  B   =>    |-  ( A  C.  C 
 <->  B  C.  C )
 
Theorempsseq2i 3034 An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
 |-  A  =  B   =>    |-  ( C  C.  A 
 <->  C  C.  B )
 
Theorempsseq12i 3035 An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  C.  C  <->  B  C.  D )
 
Theorempsseq1d 3036 An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  C.  C  <->  B  C.  C ) )
 
Theorempsseq2d 3037 An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  C.  A  <->  C  C.  B ) )
 
Theorempsseq12d 3038 An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  C.  C  <->  B  C.  D ) )
 
Theorempssss 3039 A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
 |-  ( A  C.  B  ->  A 
 C_  B )
 
Theorempssne 3040 Two classes in a proper subclass relationship are not equal. (Contributed by NM, 16-Feb-2015.)
 |-  ( A  C.  B  ->  A  =/=  B )
 
Theorempssssd 3041 Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
 |-  ( ph  ->  A  C.  B )   =>    |-  ( ph  ->  A  C_  B )
 
Theorempssned 3042 Proper subclasses are unequal. Deduction form of pssne 3040. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C.  B )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremsspssr 3043 Subclass in terms of proper subclass. (Contributed by Jim Kingdon, 16-Jul-2018.)
 |-  ( ( A  C.  B  \/  A  =  B )  ->  A  C_  B )
 
Theorempssirr 3044 Proper subclass is irreflexive. Theorem 7 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
 |- 
 -.  A  C.  A
 
Theorempssn2lp 3045 Proper subclass has no 2-cycle loops. Compare Theorem 8 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |- 
 -.  ( A  C.  B  /\  B  C.  A )
 
Theoremsspsstrir 3046 Two ways of stating trichotomy with respect to inclusion. (Contributed by Jim Kingdon, 16-Jul-2018.)
 |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  ->  ( A  C_  B  \/  B  C_  A )
 )
 
Theoremssnpss 3047 Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  ->  -.  B  C.  A )
 
Theoremsspssn 3048 Like pssn2lp 3045 but for subset and proper subset. (Contributed by Jim Kingdon, 17-Jul-2018.)
 |- 
 -.  ( A  C_  B  /\  B  C.  A )
 
Theorempsstr 3049 Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
 |-  ( ( A  C.  B  /\  B  C.  C ) 
 ->  A  C.  C )
 
Theoremsspsstr 3050 Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
 |-  ( ( A  C_  B  /\  B  C.  C ) 
 ->  A  C.  C )
 
Theorempsssstr 3051 Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
 |-  ( ( A  C.  B  /\  B  C_  C )  ->  A  C.  C )
 
Theorempsstrd 3052 Proper subclass inclusion is transitive. Deduction form of psstr 3049. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C.  B )   &    |-  ( ph  ->  B  C.  C )   =>    |-  ( ph  ->  A  C.  C )
 
Theoremsspsstrd 3053 Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 3050. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  B  C.  C )   =>    |-  ( ph  ->  A  C.  C )
 
Theorempsssstrd 3054 Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 3051. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C.  B )   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  A  C.  C )
 
2.1.13  The difference, union, and intersection of two classes
 
2.1.13.1  The difference of two classes
 
Theoremdifeq1 3055 Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  =  B  ->  ( A  \  C )  =  ( B  \  C ) )
 
Theoremdifeq2 3056 Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B ) )
 
Theoremdifeq12 3057 Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  \  C )  =  ( B  \  D ) )
 
Theoremdifeq1i 3058 Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  A  =  B   =>    |-  ( A  \  C )  =  ( B  \  C )
 
Theoremdifeq2i 3059 Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  A  =  B   =>    |-  ( C  \  A )  =  ( C  \  B )
 
Theoremdifeq12i 3060 Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  \  C )  =  ( B  \  D )
 
Theoremdifeq1d 3061 Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  \  C )  =  ( B  \  C ) )
 
Theoremdifeq2d 3062 Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  \  A )  =  ( C  \  B ) )
 
Theoremdifeq12d 3063 Equality deduction for class difference. (Contributed by FL, 29-May-2014.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  \  C )  =  ( B  \  D ) )
 
Theoremdifeqri 3064* Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( x  e.  A  /\  -.  x  e.  B )  <->  x  e.  C )   =>    |-  ( A  \  B )  =  C
 
Theoremnfdif 3065 Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A 
 \  B )
 
Theoremeldifi 3066 Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  e.  ( B  \  C )  ->  A  e.  B )
 
Theoremeldifn 3067 Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
 |-  ( A  e.  ( B  \  C )  ->  -.  A  e.  C )
 
Theoremelndif 3068 A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.)
 |-  ( A  e.  B  ->  -.  A  e.  ( C  \  B ) )
 
Theoremdifdif 3069 Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
 |-  ( A  \  ( B  \  A ) )  =  A
 
Theoremdifss 3070 Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  \  B )  C_  A
 
Theoremdifssd 3071 A difference of two classes is contained in the minuend. Deduction form of difss 3070. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  ( A  \  B )  C_  A )
 
Theoremdifss2 3072 If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
 |-  ( A  C_  ( B  \  C )  ->  A  C_  B )
 
Theoremdifss2d 3073 If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 3072. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  ( B  \  C ) )   =>    |-  ( ph  ->  A  C_  B )
 
Theoremssdifss 3074 Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
 |-  ( A  C_  B  ->  ( A  \  C )  C_  B )
 
Theoremddifnel 3075* Double complement under universal class. The hypothesis is one way of expressing the idea that membership in  A is decidable. Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that  A is a subset of  _V  \  ( _V  \  A ), see ddifss 3175. (Contributed by Jim Kingdon, 21-Jul-2018.)
 |-  ( -.  x  e.  ( _V  \  A )  ->  x  e.  A )   =>    |-  ( _V  \  ( _V  \  A ) )  =  A
 
Theoremssconb 3076 Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.)
 |-  ( ( A  C_  C  /\  B  C_  C )  ->  ( A  C_  ( C  \  B )  <->  B  C_  ( C  \  A ) ) )
 
Theoremsscon 3077 Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  ( C  \  B )  C_  ( C  \  A ) )
 
Theoremssdif 3078 Difference law for subsets. (Contributed by NM, 28-May-1998.)
 |-  ( A  C_  B  ->  ( A  \  C )  C_  ( B  \  C ) )
 
Theoremssdifd 3079 If  A is contained in  B, then  ( A 
\  C ) is contained in  ( B  \  C ). Deduction form of ssdif 3078. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( A  \  C )  C_  ( B  \  C ) )
 
Theoremsscond 3080 If  A is contained in  B, then  ( C 
\  B ) is contained in  ( C  \  A ). Deduction form of sscon 3077. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C  \  B )  C_  ( C  \  A ) )
 
Theoremssdifssd 3081 If  A is contained in  B, then  ( A 
\  C ) is also contained in  B. Deduction form of ssdifss 3074. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( A  \  C )  C_  B )
 
Theoremssdif2d 3082 If  A is contained in  B and  C is contained in  D, then  ( A  \  D ) is contained in  ( B  \  C ). Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C 
 C_  D )   =>    |-  ( ph  ->  ( A  \  D ) 
 C_  ( B  \  C ) )
 
Theoremraldifb 3083 Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
 |-  ( A. x  e.  A  ( x  e/  B  ->  ph )  <->  A. x  e.  ( A  \  B ) ph )
 
2.1.13.2  The union of two classes
 
Theoremelun 3084 Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.)
 |-  ( A  e.  ( B  u.  C )  <->  ( A  e.  B  \/  A  e.  C ) )
 
Theoremuneqri 3085* Inference from membership to union. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  C )   =>    |-  ( A  u.  B )  =  C
 
Theoremunidm 3086 Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  u.  A )  =  A
 
Theoremuncom 3087 Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  u.  B )  =  ( B  u.  A )
 
Theoremequncom 3088 If a class equals the union of two other classes, then it equals the union of those two classes commuted. (Contributed by Alan Sare, 18-Feb-2012.)
 |-  ( A  =  ( B  u.  C )  <->  A  =  ( C  u.  B ) )
 
Theoremequncomi 3089 Inference form of equncom 3088. (Contributed by Alan Sare, 18-Feb-2012.)
 |-  A  =  ( B  u.  C )   =>    |-  A  =  ( C  u.  B )
 
Theoremuneq1 3090 Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
 
Theoremuneq2 3091 Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
 
Theoremuneq12 3092 Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  u.  C )  =  ( B  u.  D ) )
 
Theoremuneq1i 3093 Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.)
 |-  A  =  B   =>    |-  ( A  u.  C )  =  ( B  u.  C )
 
Theoremuneq2i 3094 Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
 |-  A  =  B   =>    |-  ( C  u.  A )  =  ( C  u.  B )
 
Theoremuneq12i 3095 Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  u.  C )  =  ( B  u.  D )
 
Theoremuneq1d 3096 Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  u.  C )  =  ( B  u.  C ) )
 
Theoremuneq2d 3097 Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  u.  A )  =  ( C  u.  B ) )
 
Theoremuneq12d 3098 Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  u.  C )  =  ( B  u.  D ) )
 
Theoremnfun 3099 Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  u.  B )
 
Theoremunass 3100 Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  u.  B )  u.  C )  =  ( A  u.  ( B  u.  C ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >