ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrabeq Unicode version

Theorem ssrabeq 3026
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
ssrabeq  |-  ( V 
C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph }
)
Distinct variable group:    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem ssrabeq
StepHypRef Expression
1 ssrab2 3025 . . 3  |-  { x  e.  V  |  ph }  C_  V
21biantru 286 . 2  |-  ( V 
C_  { x  e.  V  |  ph }  <->  ( V  C_  { x  e.  V  |  ph }  /\  { x  e.  V  |  ph }  C_  V
) )
3 eqss 2960 . 2  |-  ( V  =  { x  e.  V  |  ph }  <->  ( V  C_  { x  e.  V  |  ph }  /\  { x  e.  V  |  ph }  C_  V
) )
42, 3bitr4i 176 1  |-  ( V 
C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph }
)
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   {crab 2310    C_ wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-in 2924  df-ss 2931
This theorem is referenced by:  difrab0eqim  3288
  Copyright terms: Public domain W3C validator