Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrabeq | Unicode version |
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
Ref | Expression |
---|---|
ssrabeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3025 | . . 3 | |
2 | 1 | biantru 286 | . 2 |
3 | eqss 2960 | . 2 | |
4 | 2, 3 | bitr4i 176 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wb 98 wceq 1243 crab 2310 wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rab 2315 df-in 2924 df-ss 2931 |
This theorem is referenced by: difrab0eqim 3288 |
Copyright terms: Public domain | W3C validator |