HomeHome Intuitionistic Logic Explorer
Theorem List (p. 26 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2501-2600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremraleqf 2501 Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
 
Theoremrexeqf 2502 Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
 
Theoremreueq1f 2503 Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
 
Theoremrmoeq1f 2504 Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
 
Theoremraleq 2505* Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
 |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
 
Theoremrexeq 2506* Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
 |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
 
Theoremreueq1 2507* Equality theorem for restricted uniqueness quantifier. (Contributed by NM, 5-Apr-2004.)
 |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
 
Theoremrmoeq1 2508* Equality theorem for restricted uniqueness quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
 
Theoremraleqi 2509* Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  A  =  B   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  B  ph )
 
Theoremrexeqi 2510* Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  A  =  B   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ph )
 
Theoremraleqdv 2511* Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ps ) )
 
Theoremrexeqdv 2512* Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ps ) )
 
Theoremraleqbi1dv 2513* Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ps ) )
 
Theoremrexeqbi1dv 2514* Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ps ) )
 
Theoremreueqd 2515* Equality deduction for restricted uniqueness quantifier. (Contributed by NM, 5-Apr-2004.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ps ) )
 
Theoremrmoeqd 2516* Equality deduction for restricted uniqueness quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ps ) )
 
Theoremraleqbidv 2517* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexeqbidv 2518* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremraleqbidva 2519* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexeqbidva 2520* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremmormo 2521 Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x ph  ->  E* x  e.  A  ph )
 
Theoremreu5 2522 Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
 |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph  /\  E* x  e.  A  ph ) )
 
Theoremreurex 2523 Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
 |-  ( E! x  e.  A  ph  ->  E. x  e.  A  ph )
 
Theoremreurmo 2524 Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
 |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )
 
Theoremrmo5 2525 Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x  e.  A  ph  <->  ( E. x  e.  A  ph  ->  E! x  e.  A  ph ) )
 
Theoremnrexrmo 2526 Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
 |-  ( -.  E. x  e.  A  ph  ->  E* x  e.  A  ph )
 
Theoremcbvralf 2527 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexf 2528 Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvral 2529* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrex 2530* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreu 2531* Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvrmo 2532* Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
Theoremcbvralv 2533* Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexv 2534* Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreuv 2535* Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvrmov 2536* Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
Theoremcbvraldva2 2537* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   &    |-  (
 ( ph  /\  x  =  y )  ->  A  =  B )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. y  e.  B  ch ) )
 
Theoremcbvrexdva2 2538* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   &    |-  (
 ( ph  /\  x  =  y )  ->  A  =  B )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. y  e.  B  ch ) )
 
Theoremcbvraldva 2539* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. y  e.  A  ch ) )
 
Theoremcbvrexdva 2540* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. y  e.  A  ch ) )
 
Theoremcbvral2v 2541* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
 
Theoremcbvrex2v 2542* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
 
Theoremcbvral3v 2543* Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.)
 |-  ( x  =  w 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  v  ->  ( ch  <->  th ) )   &    |-  (
 z  =  u  ->  ( th  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. w  e.  A  A. v  e.  B  A. u  e.  C  ps )
 
Theoremcbvralsv 2544* Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
 
Theoremcbvrexsv 2545* Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( E. x  e.  A  ph  <->  E. y  e.  A  [ y  /  x ] ph )
 
Theoremsbralie 2546* Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( [ x  /  y ] A. x  e.  y  ph  <->  A. y  e.  x  ps )
 
Theoremrabbiia 2547 Equivalent wff's yield equal restricted class abstractions (inference rule). (Contributed by NM, 22-May-1999.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
 
Theoremrabbidva 2548* Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by NM, 28-Nov-2003.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch }
 )
 
Theoremrabbidv 2549* Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by NM, 10-Feb-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch }
 )
 
Theoremrabeqf 2550 Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
 
Theoremrabeq 2551* Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
 |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph
 } )
 
Theoremrabeqbidv 2552* Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }
 )
 
Theoremrabeqbidva 2553* Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }
 )
 
Theoremrabeq2i 2554 Inference rule from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
 |-  A  =  { x  e.  B  |  ph }   =>    |-  ( x  e.  A  <->  ( x  e.  B  /\  ph )
 )
 
Theoremcbvrab 2555 Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
 
Theoremcbvrabv 2556* Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
 
2.1.6  The universal class
 
Syntaxcvv 2557 Extend class notation to include the universal class symbol.
 class  _V
 
Theoremvjust 2558 Soundness justification theorem for df-v 2559. (Contributed by Rodolfo Medina, 27-Apr-2010.)
 |- 
 { x  |  x  =  x }  =  {
 y  |  y  =  y }
 
Definitiondf-v 2559 Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.)
 |- 
 _V  =  { x  |  x  =  x }
 
Theoremvex 2560 All setvar variables are sets (see isset 2561). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 5-Aug-1993.)
 |-  x  e.  _V
 
Theoremisset 2561* Two ways to say " A is a set": A class  A is a member of the universal class  _V (see df-v 2559) if and only if the class  A exists (i.e. there exists some set  x equal to class 
A). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device " A  e.  _V " to mean " A is a set" very frequently, for example in uniex 4174. Note the when  A is not a set, it is called a proper class. In some theorems, such as uniexg 4175, in order to shorten certain proofs we use the more general antecedent  A  e.  V instead of  A  e.  _V to mean " A is a set."

Note that a constant is implicitly considered distinct from all variables. This is why  _V is not included in the distinct variable list, even though df-clel 2036 requires that the expression substituted for  B not contain  x. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

 |-  ( A  e.  _V  <->  E. x  x  =  A )
 
Theoremissetf 2562 A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   =>    |-  ( A  e.  _V  <->  E. x  x  =  A )
 
Theoremisseti 2563* A way to say " A is a set" (inference rule). (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  E. x  x  =  A
 
Theoremissetri 2564* A way to say " A is a set" (inference rule). (Contributed by NM, 5-Aug-1993.)
 |- 
 E. x  x  =  A   =>    |-  A  e.  _V
 
Theoremeqvisset 2565 A class equal to a variable is a set. Note the absence of dv condition, contrary to isset 2561 and issetri 2564. (Contributed by BJ, 27-Apr-2019.)
 |-  ( x  =  A  ->  A  e.  _V )
 
Theoremelex 2566 If a class is a member of another class, it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( A  e.  B  ->  A  e.  _V )
 
Theoremelexi 2567 If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  B   =>    |-  A  e.  _V
 
Theoremelisset 2568* An element of a class exists. (Contributed by NM, 1-May-1995.)
 |-  ( A  e.  V  ->  E. x  x  =  A )
 
Theoremelex22 2569* If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
 |-  ( ( A  e.  B  /\  A  e.  C )  ->  E. x ( x  e.  B  /\  x  e.  C ) )
 
Theoremelex2 2570* If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.)
 |-  ( A  e.  B  ->  E. x  x  e.  B )
 
Theoremralv 2571 A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
 |-  ( A. x  e. 
 _V  ph  <->  A. x ph )
 
Theoremrexv 2572 An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
 |-  ( E. x  e. 
 _V  ph  <->  E. x ph )
 
Theoremreuv 2573 A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
 |-  ( E! x  e. 
 _V  ph  <->  E! x ph )
 
Theoremrmov 2574 A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( E* x  e. 
 _V  ph  <->  E* x ph )
 
Theoremrabab 2575 A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 { x  e.  _V  |  ph }  =  { x  |  ph }
 
Theoremralcom4 2576* Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( A. x  e.  A  A. y ph  <->  A. y A. x  e.  A  ph )
 
Theoremrexcom4 2577* Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
 
Theoremrexcom4a 2578* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
 |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
 
Theoremrexcom4b 2579* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
 |-  B  e.  _V   =>    |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ph )
 
Theoremceqsalt 2580* Closed theorem version of ceqsalg 2582. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremceqsralt 2581* Restricted quantifier version of ceqsalt 2580. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  /\  A  e.  B )  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremceqsalg 2582* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ( x  =  A  -> 
 ph )  <->  ps ) )
 
Theoremceqsal 2583* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
 
Theoremceqsalv 2584* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ( x  =  A  -> 
 ph )  <->  ps )
 
Theoremceqsralv 2585* Restricted quantifier version of ceqsalv 2584. (Contributed by NM, 21-Jun-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremgencl 2586* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( th  <->  E. x ( ch 
 /\  A  =  B ) )   &    |-  ( A  =  B  ->  ( ph  <->  ps ) )   &    |-  ( ch  ->  ph )   =>    |-  ( th  ->  ps )
 
Theorem2gencl 2587* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( C  e.  S  <->  E. x  e.  R  A  =  C )   &    |-  ( D  e.  S 
 <-> 
 E. y  e.  R  B  =  D )   &    |-  ( A  =  C  ->  (
 ph 
 <->  ps ) )   &    |-  ( B  =  D  ->  ( ps  <->  ch ) )   &    |-  (
 ( x  e.  R  /\  y  e.  R )  ->  ph )   =>    |-  ( ( C  e.  S  /\  D  e.  S )  ->  ch )
 
Theorem3gencl 2588* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( D  e.  S  <->  E. x  e.  R  A  =  D )   &    |-  ( F  e.  S 
 <-> 
 E. y  e.  R  B  =  F )   &    |-  ( G  e.  S  <->  E. z  e.  R  C  =  G )   &    |-  ( A  =  D  ->  (
 ph 
 <->  ps ) )   &    |-  ( B  =  F  ->  ( ps  <->  ch ) )   &    |-  ( C  =  G  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  R  /\  y  e.  R  /\  z  e.  R )  ->  ph )   =>    |-  ( ( D  e.  S  /\  F  e.  S  /\  G  e.  S ) 
 ->  th )
 
Theoremcgsexg 2589* Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.)
 |-  ( x  =  A  ->  ch )   &    |-  ( ch  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( E. x ( ch  /\  ph )  <->  ps ) )
 
Theoremcgsex2g 2590* Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ch )   &    |-  ( ch  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( ch  /\  ph )  <->  ps ) )
 
Theoremcgsex4g 2591* An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.)
 |-  ( ( ( x  =  A  /\  y  =  B )  /\  (
 z  =  C  /\  w  =  D )
 )  ->  ch )   &    |-  ( ch  ->  ( ph  <->  ps ) )   =>    |-  ( ( ( A  e.  R  /\  B  e.  S )  /\  ( C  e.  R  /\  D  e.  S ) )  ->  ( E. x E. y E. z E. w ( ch  /\  ph )  <->  ps ) )
 
Theoremceqsex 2592* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( E. x ( x  =  A  /\  ph )  <->  ps )
 
Theoremceqsexv 2593* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ( x  =  A  /\  ph )  <->  ps )
 
Theoremceqsex2 2594* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
 |- 
 F/ x ps   &    |-  F/ y ch   &    |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
 
Theoremceqsex2v 2595* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
 
Theoremceqsex3v 2596* Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   =>    |-  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ph )  <->  th )
 
Theoremceqsex4v 2597* Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( z  =  C  ->  ( ch  <->  th ) )   &    |-  ( w  =  D  ->  ( th  <->  ta ) )   =>    |-  ( E. x E. y E. z E. w ( ( x  =  A  /\  y  =  B )  /\  (
 z  =  C  /\  w  =  D )  /\  ph )  <->  ta )
 
Theoremceqsex6v 2598* Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( z  =  C  ->  ( ch  <->  th ) )   &    |-  ( w  =  D  ->  ( th  <->  ta ) )   &    |-  ( v  =  E  ->  ( ta  <->  et ) )   &    |-  ( u  =  F  ->  ( et  <->  ze ) )   =>    |-  ( E. x E. y E. z E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  ze )
 
Theoremceqsex8v 2599* Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   &    |-  G  e.  _V   &    |-  H  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( z  =  C  ->  ( ch  <->  th ) )   &    |-  ( w  =  D  ->  ( th  <->  ta ) )   &    |-  ( v  =  E  ->  ( ta  <->  et ) )   &    |-  ( u  =  F  ->  ( et  <->  ze ) )   &    |-  ( t  =  G  ->  ( ze  <->  si ) )   &    |-  ( s  =  H  ->  ( si  <->  rh ) )   =>    |-  ( E. x E. y E. z E. w E. v E. u E. t E. s ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D ) )  /\  ( ( v  =  E  /\  u  =  F )  /\  (
 t  =  G  /\  s  =  H )
 )  /\  ph )  <->  rh )
 
Theoremgencbvex 2600* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   &    |-  ( A  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ( A  =  y  ->  ( ch  <->  th ) )   &    |-  ( th 
 <-> 
 E. x ( ch 
 /\  A  =  y ) )   =>    |-  ( E. x ( ch  /\  ph )  <->  E. y ( th  /\  ps ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >