ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniiunlem Unicode version

Theorem uniiunlem 3028
Description: A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Assertion
Ref Expression
uniiunlem  |-  ( A. x  e.  A  B  e.  D  ->  ( A. x  e.  A  B  e.  C  <->  { y  |  E. x  e.  A  y  =  B }  C_  C
) )
Distinct variable groups:    x, y    y, A    y, B    x, C
Allowed substitution hints:    A( x)    B( x)    C( y)    D( x, y)

Proof of Theorem uniiunlem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2046 . . . . . 6  |-  ( y  =  z  ->  (
y  =  B  <->  z  =  B ) )
21rexbidv 2327 . . . . 5  |-  ( y  =  z  ->  ( E. x  e.  A  y  =  B  <->  E. x  e.  A  z  =  B ) )
32cbvabv 2161 . . . 4  |-  { y  |  E. x  e.  A  y  =  B }  =  { z  |  E. x  e.  A  z  =  B }
43sseq1i 2969 . . 3  |-  ( { y  |  E. x  e.  A  y  =  B }  C_  C  <->  { z  |  E. x  e.  A  z  =  B }  C_  C )
5 r19.23v 2425 . . . . 5  |-  ( A. x  e.  A  (
z  =  B  -> 
z  e.  C )  <-> 
( E. x  e.  A  z  =  B  ->  z  e.  C
) )
65albii 1359 . . . 4  |-  ( A. z A. x  e.  A  ( z  =  B  ->  z  e.  C
)  <->  A. z ( E. x  e.  A  z  =  B  ->  z  e.  C ) )
7 ralcom4 2576 . . . 4  |-  ( A. x  e.  A  A. z ( z  =  B  ->  z  e.  C )  <->  A. z A. x  e.  A  ( z  =  B  ->  z  e.  C
) )
8 abss 3009 . . . 4  |-  ( { z  |  E. x  e.  A  z  =  B }  C_  C  <->  A. z
( E. x  e.  A  z  =  B  ->  z  e.  C
) )
96, 7, 83bitr4i 201 . . 3  |-  ( A. x  e.  A  A. z ( z  =  B  ->  z  e.  C )  <->  { z  |  E. x  e.  A  z  =  B }  C_  C )
104, 9bitr4i 176 . 2  |-  ( { y  |  E. x  e.  A  y  =  B }  C_  C  <->  A. x  e.  A  A. z
( z  =  B  ->  z  e.  C
) )
11 nfv 1421 . . . . 5  |-  F/ z  B  e.  C
12 eleq1 2100 . . . . 5  |-  ( z  =  B  ->  (
z  e.  C  <->  B  e.  C ) )
1311, 12ceqsalg 2582 . . . 4  |-  ( B  e.  D  ->  ( A. z ( z  =  B  ->  z  e.  C )  <->  B  e.  C ) )
1413ralimi 2384 . . 3  |-  ( A. x  e.  A  B  e.  D  ->  A. x  e.  A  ( A. z ( z  =  B  ->  z  e.  C )  <->  B  e.  C ) )
15 ralbi 2445 . . 3  |-  ( A. x  e.  A  ( A. z ( z  =  B  ->  z  e.  C )  <->  B  e.  C )  ->  ( A. x  e.  A  A. z ( z  =  B  ->  z  e.  C )  <->  A. x  e.  A  B  e.  C ) )
1614, 15syl 14 . 2  |-  ( A. x  e.  A  B  e.  D  ->  ( A. x  e.  A  A. z ( z  =  B  ->  z  e.  C )  <->  A. x  e.  A  B  e.  C ) )
1710, 16syl5rbb 182 1  |-  ( A. x  e.  A  B  e.  D  ->  ( A. x  e.  A  B  e.  C  <->  { y  |  E. x  e.  A  y  =  B }  C_  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307    C_ wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-in 2924  df-ss 2931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator