ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom4 Structured version   Unicode version

Theorem ralcom4 2570
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
ralcom4
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem ralcom4
StepHypRef Expression
1 ralcom 2467 . 2  _V  _V
2 ralv 2565 . . 3  _V
32ralbii 2324 . 2  _V
4 ralv 2565 . 2  _V
51, 3, 43bitr3i 199 1
Colors of variables: wff set class
Syntax hints:   wb 98  wal 1240  wral 2300   _Vcvv 2551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553
This theorem is referenced by:  uniiunlem  3022  uni0b  3596  iunss  3689  trint  3860  reliun  4401  funimass4  5167  ralrnmpt2  5557
  Copyright terms: Public domain W3C validator