ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidm Unicode version

Theorem unidm 3083
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
unidm  u.

Proof of Theorem unidm
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 oridm 674 . 2
21uneqri 3082 1  u.
Colors of variables: wff set class
Syntax hints:   wceq 1243   wcel 1393    u. cun 2912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2556  df-un 2919
This theorem is referenced by:  unundi  3101  unundir  3102  uneqin  3185  difabs  3198  dfsn2  3384  diftpsn3  3499  unisn  3590  dfdm2  4798  fun2  5010  resasplitss  5015  xpiderm  6117
  Copyright terms: Public domain W3C validator