Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisn | Unicode version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisn.1 |
Ref | Expression |
---|---|
unisn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3389 | . . 3 | |
2 | 1 | unieqi 3590 | . 2 |
3 | unisn.1 | . . 3 | |
4 | 3, 3 | unipr 3594 | . 2 |
5 | unidm 3086 | . 2 | |
6 | 2, 4, 5 | 3eqtri 2064 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 wcel 1393 cvv 2557 cun 2915 csn 3375 cpr 3376 cuni 3580 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-uni 3581 |
This theorem is referenced by: unisng 3597 uniintsnr 3651 unisuc 4150 op1sta 4802 op2nda 4805 elxp4 4808 uniabio 4877 iotass 4884 en1bg 6280 |
Copyright terms: Public domain | W3C validator |