ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneqin Structured version   Unicode version

Theorem uneqin 3182
Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uneqin  u.  i^i

Proof of Theorem uneqin
StepHypRef Expression
1 eqimss 2991 . . . 4  u.  i^i  u.  C_  i^i
2 unss 3111 . . . . 5  C_  i^i  C_  i^i  u.  C_  i^i
3 ssin 3153 . . . . . . 7  C_  C_  C_  i^i
4 sstr 2947 . . . . . . 7  C_  C_  C_
53, 4sylbir 125 . . . . . 6 
C_  i^i  C_
6 ssin 3153 . . . . . . 7  C_  C_  C_  i^i
7 simpl 102 . . . . . . 7  C_  C_  C_
86, 7sylbir 125 . . . . . 6 
C_  i^i  C_
95, 8anim12i 321 . . . . 5  C_  i^i  C_  i^i  C_  C_
102, 9sylbir 125 . . . 4  u. 
C_  i^i 
C_  C_
111, 10syl 14 . . 3  u.  i^i 
C_  C_
12 eqss 2954 . . 3 
C_  C_
1311, 12sylibr 137 . 2  u.  i^i
14 unidm 3080 . . . 4  u.
15 inidm 3140 . . . 4  i^i
1614, 15eqtr4i 2060 . . 3  u.  i^i
17 uneq2 3085 . . 3  u.  u.
18 ineq2 3126 . . 3  i^i  i^i
1916, 17, 183eqtr3a 2093 . 2  u.  i^i
2013, 19impbii 117 1  u.  i^i
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98   wceq 1242    u. cun 2909    i^i cin 2910    C_ wss 2911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator