HomeHome Intuitionistic Logic Explorer
Theorem List (p. 32 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3101-3200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremun12 3101 A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
 |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C ) )
 
Theoremun23 3102 A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  B )
 
Theoremun4 3103 A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
 |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D ) )
 
Theoremunundi 3104 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
 |-  ( A  u.  ( B  u.  C ) )  =  ( ( A  u.  B )  u.  ( A  u.  C ) )
 
Theoremunundir 3105 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
 |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  ( B  u.  C ) )
 
Theoremssun1 3106 Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
 |-  A  C_  ( A  u.  B )
 
Theoremssun2 3107 Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
 |-  A  C_  ( B  u.  A )
 
Theoremssun3 3108 Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  C_  B  ->  A  C_  ( B  u.  C ) )
 
Theoremssun4 3109 Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
 |-  ( A  C_  B  ->  A  C_  ( C  u.  B ) )
 
Theoremelun1 3110 Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  e.  B  ->  A  e.  ( B  u.  C ) )
 
Theoremelun2 3111 Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
 |-  ( A  e.  B  ->  A  e.  ( C  u.  B ) )
 
Theoremunss1 3112 Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  ->  ( A  u.  C )  C_  ( B  u.  C ) )
 
Theoremssequn1 3113 A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  <->  ( A  u.  B )  =  B )
 
Theoremunss2 3114 Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
 |-  ( A  C_  B  ->  ( C  u.  A )  C_  ( C  u.  B ) )
 
Theoremunss12 3115 Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
 |-  ( ( A  C_  B  /\  C  C_  D )  ->  ( A  u.  C )  C_  ( B  u.  D ) )
 
Theoremssequn2 3116 A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
 |-  ( A  C_  B  <->  ( B  u.  A )  =  B )
 
Theoremunss 3117 The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.)
 |-  ( ( A  C_  C  /\  B  C_  C ) 
 <->  ( A  u.  B )  C_  C )
 
Theoremunssi 3118 An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  A  C_  C   &    |-  B  C_  C   =>    |-  ( A  u.  B )  C_  C
 
Theoremunssd 3119 A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  A  C_  C )   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  ( A  u.  B ) 
 C_  C )
 
Theoremunssad 3120 If  ( A  u.  B ) is contained in  C, so is  A. One-way deduction form of unss 3117. Partial converse of unssd 3119. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  ( A  u.  B )  C_  C )   =>    |-  ( ph  ->  A  C_  C )
 
Theoremunssbd 3121 If  ( A  u.  B ) is contained in  C, so is  B. One-way deduction form of unss 3117. Partial converse of unssd 3119. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  ( A  u.  B )  C_  C )   =>    |-  ( ph  ->  B  C_  C )
 
Theoremssun 3122 A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
 |-  ( ( A  C_  B  \/  A  C_  C )  ->  A  C_  ( B  u.  C ) )
 
Theoremrexun 3123 Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
 |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
 
Theoremralunb 3124 Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )
 
Theoremralun 3125 Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( A. x  e.  A  ph  /\  A. x  e.  B  ph )  ->  A. x  e.  ( A  u.  B ) ph )
 
2.1.13.3  The intersection of two classes
 
Theoremelin 3126 Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )
 
Theoremelin2 3127 Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
 |-  X  =  ( B  i^i  C )   =>    |-  ( A  e.  X 
 <->  ( A  e.  B  /\  A  e.  C ) )
 
Theoremelin3 3128 Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
 |-  X  =  ( ( B  i^i  C )  i^i  D )   =>    |-  ( A  e.  X 
 <->  ( A  e.  B  /\  A  e.  C  /\  A  e.  D )
 )
 
Theoremincom 3129 Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  i^i  B )  =  ( B  i^i  A )
 
Theoremineqri 3130* Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  C )   =>    |-  ( A  i^i  B )  =  C
 
Theoremineq1 3131 Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.)
 |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C ) )
 
Theoremineq2 3132 Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
 |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B ) )
 
Theoremineq12 3133 Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C )  =  ( B  i^i  D ) )
 
Theoremineq1i 3134 Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
 |-  A  =  B   =>    |-  ( A  i^i  C )  =  ( B  i^i  C )
 
Theoremineq2i 3135 Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
 |-  A  =  B   =>    |-  ( C  i^i  A )  =  ( C  i^i  B )
 
Theoremineq12i 3136 Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  i^i  C )  =  ( B  i^i  D )
 
Theoremineq1d 3137 Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  i^i  C )  =  ( B  i^i  C ) )
 
Theoremineq2d 3138 Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  i^i  A )  =  ( C  i^i  B ) )
 
Theoremineq12d 3139 Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  i^i  C )  =  ( B  i^i  D ) )
 
Theoremineqan12d 3140 Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( A  i^i  C )  =  ( B  i^i  D ) )
 
Theoremdfss1 3141 A frequently-used variant of subclass definition df-ss 2931. (Contributed by NM, 10-Jan-2015.)
 |-  ( A  C_  B  <->  ( B  i^i  A )  =  A )
 
Theoremdfss5 3142 Another definition of subclasshood. Similar to df-ss 2931, dfss 2932, and dfss1 3141. (Contributed by David Moews, 1-May-2017.)
 |-  ( A  C_  B  <->  A  =  ( B  i^i  A ) )
 
Theoremnfin 3143 Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  i^i  B )
 
Theoremcsbing 3144 Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.)
 |-  ( A  e.  B  -> 
 [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )
 
Theoremrabbi2dva 3145* Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( x  e.  B  <->  ps ) )   =>    |-  ( ph  ->  ( A  i^i  B )  =  { x  e.  A  |  ps }
 )
 
Theoreminidm 3146 Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  i^i  A )  =  A
 
Theoreminass 3147 Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( A  i^i  ( B  i^i  C ) )
 
Theoremin12 3148 A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.)
 |-  ( A  i^i  ( B  i^i  C ) )  =  ( B  i^i  ( A  i^i  C ) )
 
Theoremin32 3149 A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i 
 B )
 
Theoremin13 3150 A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
 |-  ( A  i^i  ( B  i^i  C ) )  =  ( C  i^i  ( B  i^i  A ) )
 
Theoremin31 3151 A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  B )  i^i 
 A )
 
Theoreminrot 3152 Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  A )  i^i 
 B )
 
Theoremin4 3153 Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.)
 |-  ( ( A  i^i  B )  i^i  ( C  i^i  D ) )  =  ( ( A  i^i  C )  i^i  ( B  i^i  D ) )
 
Theoreminindi 3154 Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
 |-  ( A  i^i  ( B  i^i  C ) )  =  ( ( A  i^i  B )  i^i  ( A  i^i  C ) )
 
Theoreminindir 3155 Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i  ( B  i^i  C ) )
 
Theoremsseqin2 3156 A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.)
 |-  ( A  C_  B  <->  ( B  i^i  A )  =  A )
 
Theoreminss1 3157 The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
 |-  ( A  i^i  B )  C_  A
 
Theoreminss2 3158 The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
 |-  ( A  i^i  B )  C_  B
 
Theoremssin 3159 Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  C_  B  /\  A  C_  C ) 
 <->  A  C_  ( B  i^i  C ) )
 
Theoremssini 3160 An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
 |-  A  C_  B   &    |-  A  C_  C   =>    |-  A  C_  ( B  i^i  C )
 
Theoremssind 3161 A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  A 
 C_  C )   =>    |-  ( ph  ->  A 
 C_  ( B  i^i  C ) )
 
Theoremssrin 3162 Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
 
Theoremsslin 3163 Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.)
 |-  ( A  C_  B  ->  ( C  i^i  A )  C_  ( C  i^i  B ) )
 
Theoremss2in 3164 Intersection of subclasses. (Contributed by NM, 5-May-2000.)
 |-  ( ( A  C_  B  /\  C  C_  D )  ->  ( A  i^i  C )  C_  ( B  i^i  D ) )
 
Theoremssinss1 3165 Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.)
 |-  ( A  C_  C  ->  ( A  i^i  B )  C_  C )
 
Theoreminss 3166 Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
 |-  ( ( A  C_  C  \/  B  C_  C )  ->  ( A  i^i  B )  C_  C )
 
2.1.13.4  Combinations of difference, union, and intersection of two classes
 
Theoremunabs 3167 Absorption law for union. (Contributed by NM, 16-Apr-2006.)
 |-  ( A  u.  ( A  i^i  B ) )  =  A
 
Theoreminabs 3168 Absorption law for intersection. (Contributed by NM, 16-Apr-2006.)
 |-  ( A  i^i  ( A  u.  B ) )  =  A
 
Theoremnssinpss 3169 Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( -.  A  C_  B 
 <->  ( A  i^i  B )  C.  A )
 
Theoremnsspssun 3170 Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.)
 |-  ( -.  A  C_  B 
 <->  B  C.  ( A  u.  B ) )
 
Theoremssddif 3171 Double complement and subset. Similar to ddifss 3175 but inside a class  B instead of the universal class  _V. In classical logic the subset operation on the right hand side could be an equality (that is,  A  C_  B  <->  ( B  \  ( B 
\  A ) )  =  A). (Contributed by Jim Kingdon, 24-Jul-2018.)
 |-  ( A  C_  B  <->  A 
 C_  ( B  \  ( B  \  A ) ) )
 
Theoremunssdif 3172 Union of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
 |-  ( A  u.  B )  C_  ( _V  \  (
 ( _V  \  A )  \  B ) )
 
Theoreminssdif 3173 Intersection of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
 |-  ( A  i^i  B )  C_  ( A  \  ( _V  \  B ) )
 
Theoremdifin 3174 Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  \  ( A  i^i  B ) )  =  ( A  \  B )
 
Theoremddifss 3175 Double complement under universal class. In classical logic (or given an additional hypothesis, as in ddifnel 3075), this is equality rather than subset. (Contributed by Jim Kingdon, 24-Jul-2018.)
 |-  A  C_  ( _V  \  ( _V  \  A ) )
 
Theoremunssin 3176 Union as a subset of class complement and intersection (De Morgan's law). One direction of the definition of union in [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
 |-  ( A  u.  B )  C_  ( _V  \  (
 ( _V  \  A )  i^i  ( _V  \  B ) ) )
 
Theoreminssun 3177 Intersection in terms of class difference and union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
 |-  ( A  i^i  B )  C_  ( _V  \  (
 ( _V  \  A )  u.  ( _V  \  B ) ) )
 
Theoreminssddif 3178 Intersection of two classes and class difference. In classical logic, such as Exercise 4.10(q) of [Mendelson] p. 231, this is an equality rather than subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
 |-  ( A  i^i  B )  C_  ( A  \  ( A  \  B ) )
 
Theoreminvdif 3179 Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
 |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B )
 
Theoremindif 3180 Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
 |-  ( A  i^i  ( A  \  B ) )  =  ( A  \  B )
 
Theoremindif2 3181 Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
 |-  ( A  i^i  ( B  \  C ) )  =  ( ( A  i^i  B )  \  C )
 
Theoremindif1 3182 Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
 |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )
 
Theoremindifcom 3183 Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.)
 |-  ( A  i^i  ( B  \  C ) )  =  ( B  i^i  ( A  \  C ) )
 
Theoremindi 3184 Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )
 
Theoremundi 3185 Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  u.  ( B  i^i  C ) )  =  ( ( A  u.  B )  i^i  ( A  u.  C ) )
 
Theoremindir 3186 Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
 |-  ( ( A  u.  B )  i^i  C )  =  ( ( A  i^i  C )  u.  ( B  i^i  C ) )
 
Theoremundir 3187 Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
 |-  ( ( A  i^i  B )  u.  C )  =  ( ( A  u.  C )  i^i  ( B  u.  C ) )
 
Theoremuneqin 3188 Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  u.  B )  =  ( A  i^i  B )  <->  A  =  B )
 
Theoremdifundi 3189 Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
 |-  ( A  \  ( B  u.  C ) )  =  ( ( A 
 \  B )  i^i  ( A  \  C ) )
 
Theoremdifundir 3190 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
 |-  ( ( A  u.  B )  \  C )  =  ( ( A 
 \  C )  u.  ( B  \  C ) )
 
Theoremdifindiss 3191 Distributive law for class difference. In classical logic, for example, theorem 40 of [Suppes] p. 29, this is an equality instead of subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
 |-  ( ( A  \  B )  u.  ( A  \  C ) ) 
 C_  ( A  \  ( B  i^i  C ) )
 
Theoremdifindir 3192 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
 |-  ( ( A  i^i  B )  \  C )  =  ( ( A 
 \  C )  i^i  ( B  \  C ) )
 
Theoremindifdir 3193 Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
 |-  ( ( A  \  B )  i^i  C )  =  ( ( A  i^i  C )  \  ( B  i^i  C ) )
 
Theoremdifdif2ss 3194 Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.)
 |-  ( ( A  \  B )  u.  ( A  i^i  C ) ) 
 C_  ( A  \  ( B  \  C ) )
 
Theoremundm 3195 De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
 |-  ( _V  \  ( A  u.  B ) )  =  ( ( _V  \  A )  i^i  ( _V  \  B ) )
 
Theoremindmss 3196 De Morgan's law for intersection. In classical logic, this would be equality rather than subset, as in Theorem 5.2(13') of [Stoll] p. 19. (Contributed by Jim Kingdon, 27-Jul-2018.)
 |-  ( ( _V  \  A )  u.  ( _V  \  B ) )  C_  ( _V  \  ( A  i^i  B ) )
 
Theoremdifun1 3197 A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
 |-  ( A  \  ( B  u.  C ) )  =  ( ( A 
 \  B )  \  C )
 
Theoremundif3ss 3198 A subset relationship involving class union and class difference. In classical logic, this would be equality rather than subset, as in the first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Jim Kingdon, 28-Jul-2018.)
 |-  ( A  u.  ( B  \  C ) ) 
 C_  ( ( A  u.  B )  \  ( C  \  A ) )
 
Theoremdifin2 3199 Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  C_  C  ->  ( A  \  B )  =  ( ( C  \  B )  i^i 
 A ) )
 
Theoremdif32 3200 Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
 |-  ( ( A  \  B )  \  C )  =  ( ( A 
 \  C )  \  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >