Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  difin2 Structured version   Unicode version

Theorem difin2 3193
 Description: Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
difin2

Proof of Theorem difin2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssel 2933 . . . . 5
21pm4.71d 373 . . . 4
32anbi1d 438 . . 3
4 eldif 2921 . . 3
5 elin 3120 . . . 4
6 eldif 2921 . . . . 5
76anbi1i 431 . . . 4
8 ancom 253 . . . . 5
9 anass 381 . . . . 5
108, 9bitr4i 176 . . . 4
115, 7, 103bitri 195 . . 3
123, 4, 113bitr4g 212 . 2
1312eqrdv 2035 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 97   wceq 1242   wcel 1390   cdif 2908   cin 2910   wss 2911 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-dif 2914  df-in 2918  df-ss 2925 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator