ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss1 Unicode version

Theorem unss1 3112
Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unss1  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )

Proof of Theorem unss1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssel 2939 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21orim1d 701 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  \/  x  e.  C
)  ->  ( x  e.  B  \/  x  e.  C ) ) )
3 elun 3084 . . 3  |-  ( x  e.  ( A  u.  C )  <->  ( x  e.  A  \/  x  e.  C ) )
4 elun 3084 . . 3  |-  ( x  e.  ( B  u.  C )  <->  ( x  e.  B  \/  x  e.  C ) )
52, 3, 43imtr4g 194 . 2  |-  ( A 
C_  B  ->  (
x  e.  ( A  u.  C )  ->  x  e.  ( B  u.  C ) ) )
65ssrdv 2951 1  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 629    e. wcel 1393    u. cun 2915    C_ wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931
This theorem is referenced by:  unss2  3114  unss12  3115  undif1ss  3298  eldifpw  4208  tposss  5861  dftpos4  5878
  Copyright terms: Public domain W3C validator