Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssequn1 | Unicode version |
Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssequn1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 128 | . . . 4 | |
2 | pm4.72 736 | . . . 4 | |
3 | elun 3084 | . . . . 5 | |
4 | 3 | bibi1i 217 | . . . 4 |
5 | 1, 2, 4 | 3bitr4i 201 | . . 3 |
6 | 5 | albii 1359 | . 2 |
7 | dfss2 2934 | . 2 | |
8 | dfcleq 2034 | . 2 | |
9 | 6, 7, 8 | 3bitr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wo 629 wal 1241 wceq 1243 wcel 1393 cun 2915 wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 |
This theorem is referenced by: ssequn2 3116 uniop 3992 pwssunim 4021 unisuc 4150 unisucg 4151 rdgisucinc 5972 oasuc 6044 omsuc 6051 |
Copyright terms: Public domain | W3C validator |