ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difundir Unicode version

Theorem difundir 3184
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir  u. 
\  C  \  C  u.  \  C

Proof of Theorem difundir
StepHypRef Expression
1 indir 3180 . 2  u.  i^i  _V  \  C  i^i  _V  \  C  u.  i^i  _V  \  C
2 invdif 3173 . 2  u.  i^i  _V  \  C  u.  \  C
3 invdif 3173 . . 3  i^i  _V  \  C  \  C
4 invdif 3173 . . 3  i^i  _V  \  C  \  C
53, 4uneq12i 3089 . 2  i^i  _V 
\  C  u.  i^i  _V  \  C  \  C  u.  \  C
61, 2, 53eqtr3i 2065 1  u. 
\  C  \  C  u.  \  C
Colors of variables: wff set class
Syntax hints:   wceq 1242   _Vcvv 2551    \ cdif 2908    u. cun 2909    i^i cin 2910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-dif 2914  df-un 2916  df-in 2918
This theorem is referenced by:  symdif1  3196  difun2  3296  diftpsn3  3496
  Copyright terms: Public domain W3C validator