Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > diftpsn3 | Unicode version |
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
Ref | Expression |
---|---|
diftpsn3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3383 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | 2 | difeq1d 3061 | . 2 |
4 | difundir 3190 | . . 3 | |
5 | 4 | a1i 9 | . 2 |
6 | df-pr 3382 | . . . . . . . . 9 | |
7 | 6 | a1i 9 | . . . . . . . 8 |
8 | 7 | ineq1d 3137 | . . . . . . 7 |
9 | incom 3129 | . . . . . . . . 9 | |
10 | indi 3184 | . . . . . . . . 9 | |
11 | 9, 10 | eqtri 2060 | . . . . . . . 8 |
12 | 11 | a1i 9 | . . . . . . 7 |
13 | necom 2289 | . . . . . . . . . . 11 | |
14 | disjsn2 3433 | . . . . . . . . . . 11 | |
15 | 13, 14 | sylbi 114 | . . . . . . . . . 10 |
16 | 15 | adantr 261 | . . . . . . . . 9 |
17 | necom 2289 | . . . . . . . . . . 11 | |
18 | disjsn2 3433 | . . . . . . . . . . 11 | |
19 | 17, 18 | sylbi 114 | . . . . . . . . . 10 |
20 | 19 | adantl 262 | . . . . . . . . 9 |
21 | 16, 20 | uneq12d 3098 | . . . . . . . 8 |
22 | unidm 3086 | . . . . . . . 8 | |
23 | 21, 22 | syl6eq 2088 | . . . . . . 7 |
24 | 8, 12, 23 | 3eqtrd 2076 | . . . . . 6 |
25 | disj3 3272 | . . . . . 6 | |
26 | 24, 25 | sylib 127 | . . . . 5 |
27 | 26 | eqcomd 2045 | . . . 4 |
28 | difid 3292 | . . . . 5 | |
29 | 28 | a1i 9 | . . . 4 |
30 | 27, 29 | uneq12d 3098 | . . 3 |
31 | un0 3251 | . . 3 | |
32 | 30, 31 | syl6eq 2088 | . 2 |
33 | 3, 5, 32 | 3eqtrd 2076 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wceq 1243 wne 2204 cdif 2914 cun 2915 cin 2916 c0 3224 csn 3375 cpr 3376 ctp 3377 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-sn 3381 df-pr 3382 df-tp 3383 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |