ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfin Unicode version

Theorem nfin 3143
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfin.1  |-  F/_ x A
nfin.2  |-  F/_ x B
Assertion
Ref Expression
nfin  |-  F/_ x
( A  i^i  B
)

Proof of Theorem nfin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfin5 2925 . 2  |-  ( A  i^i  B )  =  { y  e.  A  |  y  e.  B }
2 nfin.2 . . . 4  |-  F/_ x B
32nfcri 2172 . . 3  |-  F/ x  y  e.  B
4 nfin.1 . . 3  |-  F/_ x A
53, 4nfrabxy 2490 . 2  |-  F/_ x { y  e.  A  |  y  e.  B }
61, 5nfcxfr 2175 1  |-  F/_ x
( A  i^i  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 1393   F/_wnfc 2165   {crab 2310    i^i cin 2916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-in 2924
This theorem is referenced by:  csbing  3144  nfres  4614
  Copyright terms: Public domain W3C validator