HomeHome Intuitionistic Logic Explorer
Theorem List (p. 88 of 95)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8701-8800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfzsuc 8701 Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
 N  ZZ>=
 `  M  M ... N  +  1  M
 ... N  u.  { N  +  1 }
 
Theoremfzpred 8702 Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
 N  ZZ>=
 `  M  M ... N  { M }  u.  M  +  1 ... N
 
Theoremfzpreddisj 8703 A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
 N  ZZ>=
 `  M  { M }  i^i  M  +  1 ... N  (/)
 
Theoremelfzp1 8704 Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
 N  ZZ>=
 `  M  K  M ... N  +  1  K  M ... N  K  N  +  1
 
Theoremfzp1ss 8705 Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 M  ZZ  M  +  1 ... N  C_  M ... N
 
Theoremfzelp1 8706 Membership in a set of sequential integers with an appended element. (Contributed by NM, 7-Dec-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 K  M ... N 
 K  M
 ... N  +  1
 
Theoremfzp1elp1 8707 Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.)
 K  M ... N  K  +  1  M ... N  +  1
 
Theoremfznatpl1 8708 Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.)
 N  NN  I 
 1 ... N  -  1  I  +  1  1 ...
 N
 
Theoremfzpr 8709 A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.)
 M  ZZ  M ... M  +  1  { M ,  M  +  1 }
 
Theoremfztp 8710 A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
 M  ZZ  M ... M  +  2  { M ,  M  +  1 ,  M  +  2 }
 
Theoremfzsuc2 8711 Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
 M  ZZ  N  ZZ>=
 `  M  -  1  M ... N  +  1  M
 ... N  u.  { N  +  1 }
 
Theoremfzp1disj 8712  M ... N  +  1 is the disjoint union of  M ... N with  { N  +  1 }. (Contributed by Mario Carneiro, 7-Mar-2014.)
 M ... N  i^i  { N  +  1 }  (/)
 
Theoremfzdifsuc 8713 Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
 N  ZZ>=
 `  M  M ... N  M
 ... N  +  1  \  { N  +  1 }
 
Theoremfzprval 8714* Two ways of defining the first two values of a sequence on  NN. (Contributed by NM, 5-Sep-2011.)
 1 ... 2 F `  if  1 ,  ,  F `  1  F `  2
 
Theoremfztpval 8715* Two ways of defining the first three values of a sequence on  NN. (Contributed by NM, 13-Sep-2011.)
 1 ... 3 F `  if  1 ,  ,  if  2 ,  ,  C  F `  1  F `  2  F `  3  C
 
Theoremfzrev 8716 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
 M  ZZ  N  ZZ  J  ZZ  K  ZZ  K  J  -  N ... J  -  M  J  -  K  M ... N
 
Theoremfzrev2 8717 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
 M  ZZ  N  ZZ  J  ZZ  K  ZZ  K  M ... N  J  -  K  J  -  N ... J  -  M
 
Theoremfzrev2i 8718 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
 J  ZZ  K  M ... N  J  -  K  J  -  N ... J  -  M
 
Theoremfzrev3 8719 The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
 K  ZZ  K  M ... N  M  +  N 
 -  K  M ... N
 
Theoremfzrev3i 8720 The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
 K  M ... N  M  +  N  -  K  M ... N
 
Theoremfznn 8721 Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.)
 N  ZZ  K 
 1 ... N  K  NN  K  <_  N
 
Theoremelfz1b 8722 Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
 N 
 1 ... M  N  NN  M  NN  N  <_  M
 
Theoremelfzm11 8723 Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.)
 M  ZZ  N  ZZ  K  M ... N  -  1  K  ZZ  M  <_  K  K  <  N
 
Theoremuzsplit 8724 Express an upper integer set as the disjoint (see uzdisj 8725) union of the first  N values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
 N  ZZ>=
 `  M  ZZ>= `  M  M ... N  -  1  u.  ZZ>=
 `  N
 
Theoremuzdisj 8725 The first  N elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.)
 M ... N  -  1  i^i  ZZ>= `  N  (/)
 
Theoremfseq1p1m1 8726 Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
 H  { <. N  +  1 ,  >. }   =>     N  NN0  F : 1 ... N -->  G  F  u.  H  G : 1 ... N  +  1
 -->  G `
  N  +  1  F  G  |`  1 ... N
 
Theoremfseq1m1p1 8727 Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
 H  { <. N ,  >. }   =>     N  NN  F : 1 ... N  -  1 -->  G  F  u.  H  G : 1 ... N
 -->  G `
  N  F  G  |`  1
 ... N  -  1
 
Theoremfz1sbc 8728* Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.)
 N  ZZ  k  N ... N  [. N  k ].
 
Theoremelfzp1b 8729 An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
 K  ZZ  N  ZZ  K  0 ... N  -  1  K  +  1  1 ...
 N
 
Theoremelfzm1b 8730 An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
 K  ZZ  N  ZZ  K  1 ... N  K  -  1  0 ... N  -  1
 
Theoremelfzp12 8731 Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.)
 N  ZZ>=
 `  M  K  M ... N  K  M  K  M  +  1 ... N
 
Theoremfzm1 8732 Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 N  ZZ>=
 `  M  K  M ... N  K  M ... N  -  1  K  N
 
Theoremfzneuz 8733 No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
 N  ZZ>= `  M  K  ZZ  M ... N  ZZ>= `  K
 
Theoremfznuz 8734 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.)
 K  M ... N  K  ZZ>= `  N  +  1
 
Theoremuznfz 8735 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.)
 K  ZZ>=
 `  N  K  M
 ... N  -  1
 
Theoremfzp1nel 8736 One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.)
 N  +  1  M
 ... N
 
Theoremfzrevral 8737* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
 M  ZZ  N  ZZ  K  ZZ  j  M ... N  k  K  -  N ... K  -  M
 [. K  -  k  j ].
 
Theoremfzrevral2 8738* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
 M  ZZ  N  ZZ  K  ZZ  j  K  -  N ... K  -  M  k  M ... N [. K  -  k  j ].
 
Theoremfzrevral3 8739* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
 M  ZZ  N  ZZ  j  M ... N  k  M ... N [. M  +  N  -  k  j ].
 
Theoremfzshftral 8740* Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
 M  ZZ  N  ZZ  K  ZZ  j  M ... N  k  M  +  K ... N  +  K
 [. k  -  K  j ].
 
Theoremige2m1fz1 8741 Membership of an integer greater than 1 decreased by 1 in a 1 based finite set of sequential integers (Contributed by Alexander van der Vekens, 14-Sep-2018.)
 N  ZZ>=
 `  2  N  -  1  1 ...
 N
 
Theoremige2m1fz 8742 Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.)
 N  NN0  2  <_  N  N  -  1  0 ...
 N
 
3.5.5  Finite intervals of nonnegative integers

Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound:  0 ... N, usually abbreviated by "fz0".

 
Theoremelfz2nn0 8743 Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 K 
 0 ... N  K  NN0  N  NN0  K  <_  N
 
Theoremfznn0 8744 Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.)
 N  NN0  K 
 0 ... N  K  NN0  K  <_  N
 
Theoremelfznn0 8745 A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 K 
 0 ... N 
 K  NN0
 
Theoremelfz3nn0 8746 The upper bound of a nonempty finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 K 
 0 ... N 
 N  NN0
 
Theorem0elfz 8747 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.)
 N  NN0  0  0
 ... N
 
Theoremnn0fz0 8748 A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.)
 N  NN0  N  0 ...
 N
 
Theoremelfz0add 8749 An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
 NN0  NN0  N 
 0 ... 
 N  0
 ...  +
 
Theoremelfz0addOLD 8750 An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) Obsolete version of elfz0add 8749 as of 25-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.)
 NN0  NN0  N 
 0 ... 
 N  0
 ...  +
 
Theoremfz0tp 8751 An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
 0 ... 2  { 0 ,  1 ,  2 }
 
Theoremelfz0ubfz0 8752 An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
 K  0 ... N  L  K ... N  K  0
 ... L
 
Theoremelfz0fzfz0 8753 A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
 M  0 ... L  N  L ... X  M  0
 ... N
 
Theoremfz0fzelfz0 8754 If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
 N  0 ... R  M  N ... R  M  0
 ... R
 
Theoremfznn0sub2 8755 Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 K 
 0 ... N  N  -  K  0 ...
 N
 
Theoremuzsubfz0 8756 Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
 L  NN0  N  ZZ>= `  L  N  -  L  0 ... N
 
Theoremfz0fzdiffz0 8757 The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
 M  0 ... N  K  M ... N  K  -  M  0 ...
 N
 
Theoremelfzmlbm 8758 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
 K  M ... N  K  -  M  0 ... N  -  M
 
TheoremelfzmlbmOLD 8759 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) Obsolete version of elfzmlbm 8758 as of 25-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.)
 K  M ... N  K  -  M  0 ... N  -  M
 
Theoremelfzmlbp 8760 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
 N  ZZ  K  M ... M  +  N  K  -  M  0 ...
 N
 
Theoremfzctr 8761 Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.)
 N  NN0 
 N  0
 ... 2  x.  N
 
Theoremdifelfzle 8762 The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
 K  0 ... N  M 
 0 ... N  K  <_  M  M  -  K  0 ...
 N
 
Theoremdifelfznle 8763 The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
 K  0 ... N  M 
 0 ... N  K  <_  M  M  +  N  -  K  0 ...
 N
 
Theoremnn0split 8764 Express the set of nonnegative integers as the disjoint (see nn0disj 8765) union of the first  N  +  1 values and the rest. (Contributed by AV, 8-Nov-2019.)
 N  NN0  NN0  0
 ... N  u.  ZZ>= `  N  +  1
 
Theoremnn0disj 8765 The first  N  +  1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
 0 ...
 N  i^i  ZZ>=
 `  N  +  1  (/)
 
Theorem1fv 8766 A one value function. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
 N  V  P  { <. 0 ,  N >. }  P : 0 ... 0 --> V  P `  0  N
 
Theorem4fvwrd4 8767* The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
 L  ZZ>= `  3  P : 0
 ... L --> V  a  V  b  V  c  V  d  V  P `  0  a  P `  1  b  P `  2  c  P `  3  d
 
Theorem2ffzeq 8768* Two functions over 0 based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
 M  NN0  F : 0
 ... M --> X  P : 0 ...
 N --> Y  F  P  M  N  i 
 0 ... M F `  i  P `  i
 
3.5.6  Half-open integer ranges
 
Syntaxcfzo 8769 Syntax for half-open integer ranges.
..^
 
Definitiondf-fzo 8770* Define a function generating sets of integers using a half-open range. Read  M..^ N as the integers from  M up to, but not including,  N; contrast with  M ... N df-fz 8645, which includes  N. Not including the endpoint simplifies a number of formulae related to cardinality and splitting; contrast fzosplit 8803 with fzsplit 8685, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.)
..^  m  ZZ ,  n  ZZ  |->  m ... n  -  1
 
Theoremfzof 8771 Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
..^ : ZZ  X.  ZZ
 --> ~P ZZ
 
Theoremelfzoel1 8772 Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
..^ C  ZZ
 
Theoremelfzoel2 8773 Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
..^ C  C  ZZ
 
Theoremelfzoelz 8774 Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
..^ C  ZZ
 
Theoremfzoval 8775 Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.)
 N  ZZ  M..^ N  M ... N  -  1
 
Theoremelfzo 8776 Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 K  ZZ  M  ZZ  N  ZZ  K  M..^ N  M 
 <_  K  K  <  N
 
Theoremelfzo2 8777 Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
 K  M..^ N  K  ZZ>= `  M  N  ZZ  K  <  N
 
Theoremelfzouz 8778 Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
 K  M..^ N  K  ZZ>= `  M
 
Theoremfzolb 8779 The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with  M  <  N. This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 
M  ZZ>= `  N. (Contributed by Mario Carneiro, 29-Sep-2015.)
 M  M..^ N  M  ZZ  N  ZZ  M  <  N
 
Theoremfzolb2 8780 The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with  M  <  N. This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 
M  ZZ>= `  N. (Contributed by Mario Carneiro, 29-Sep-2015.)
 M  ZZ  N  ZZ  M  M..^ N  M  <  N
 
Theoremelfzole1 8781 A member in a half-open integer interval is greater than or equal to the lower bound. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 K  M..^ N  M  <_  K
 
Theoremelfzolt2 8782 A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 K  M..^ N  K  <  N
 
Theoremelfzolt3 8783 Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 K  M..^ N  M  <  N
 
Theoremelfzolt2b 8784 A member in a half-open integer interval is less than the upper bound. (Contributed by Mario Carneiro, 29-Sep-2015.)
 K  M..^ N  K  K..^ N
 
Theoremelfzolt3b 8785 Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Mario Carneiro, 29-Sep-2015.)
 K  M..^ N  M  M..^ N
 
Theoremfzonel 8786 A half-open range does not contain its right endpoint. (Contributed by Stefan O'Rear, 25-Aug-2015.)
..^
 
Theoremelfzouz2 8787 The upper bound of a half-open range is greater or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015.)
 K  M..^ N  N  ZZ>= `  K
 
Theoremelfzofz 8788 A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 K  M..^ N  K  M ... N
 
Theoremelfzo3 8789 Express membership in a half-open integer interval in terms of the "less than or equal" and "less than" predicates on integers, resp.  K 
ZZ>= `  M  M  <_  K,  K  K..^ N  K  < 
N. (Contributed by Mario Carneiro, 29-Sep-2015.)
 K  M..^ N  K  ZZ>= `  M  K  K..^ N
 
Theoremfzom 8790* A half-open integer interval is inhabited iff it contains its left endpoint. (Contributed by Jim Kingdon, 20-Apr-2020.)
 M..^ N  M  M..^ N
 
Theoremfzossfz 8791 A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
..^  C_  ...
 
Theoremfzon 8792 A half-open set of sequential integers is empty if the bounds are equal or reversed. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
 M  ZZ  N  ZZ  N  <_  M  M..^ N  (/)
 
Theoremfzonlt0 8793 A half-open integer range is empty if the bounds are equal or reversed. (Contributed by AV, 20-Oct-2018.)
 M  ZZ  N  ZZ  M  <  N  M..^ N  (/)
 
Theoremfzo0 8794 Half-open sets with equal endpoints are empty. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
..^  (/)
 
Theoremfzonnsub 8795 If  K  <  N then 
N  -  K is a positive integer. (Contributed by Mario Carneiro, 29-Sep-2015.) (Revised by Mario Carneiro, 1-Jan-2017.)
 K  M..^ N  N  -  K 
 NN
 
Theoremfzonnsub2 8796 If  M  <  N then 
N  -  M is a positive integer. (Contributed by Mario Carneiro, 1-Jan-2017.)
 K  M..^ N  N  -  M 
 NN
 
Theoremfzoss1 8797 Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
 K  ZZ>=
 `  M  K..^ N  C_  M..^ N
 
Theoremfzoss2 8798 Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
 N  ZZ>=
 `  K  M..^ K  C_  M..^ N
 
Theoremfzossrbm1 8799 Subset of a half open range. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
 N  ZZ  0..^ N  -  1  C_  0..^ N
 
Theoremfzo0ss1 8800 Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
 1..^ N  C_  0..^ N
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9457
  Copyright terms: Public domain < Previous  Next >