Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexneg | Unicode version |
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
rexneg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 8689 | . 2 | |
2 | renepnf 7073 | . . . 4 | |
3 | ifnefalse 3342 | . . . 4 | |
4 | 2, 3 | syl 14 | . . 3 |
5 | renemnf 7074 | . . . 4 | |
6 | ifnefalse 3342 | . . . 4 | |
7 | 5, 6 | syl 14 | . . 3 |
8 | 4, 7 | eqtrd 2072 | . 2 |
9 | 1, 8 | syl5eq 2084 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1243 wcel 1393 wne 2204 cif 3331 cr 6888 cpnf 7057 cmnf 7058 cneg 7183 cxne 8686 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-un 4170 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-if 3332 df-pw 3361 df-sn 3381 df-pr 3382 df-uni 3581 df-pnf 7062 df-mnf 7063 df-xneg 8689 |
This theorem is referenced by: xneg0 8744 xnegcl 8745 xnegneg 8746 xltnegi 8748 |
Copyright terms: Public domain | W3C validator |