Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegpnf | Unicode version |
Description: Minus . Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 8689 | . 2 | |
2 | eqid 2040 | . . 3 | |
3 | 2 | iftruei 3337 | . 2 |
4 | 1, 3 | eqtri 2060 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 cif 3331 cpnf 7057 cmnf 7058 cneg 7183 cxne 8686 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-if 3332 df-xneg 8689 |
This theorem is referenced by: xnegcl 8745 xnegneg 8746 xltnegi 8748 |
Copyright terms: Public domain | W3C validator |