HomeHome Intuitionistic Logic Explorer
Theorem List (p. 102 of 102)
< Previous  Wrap >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10101-10124   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Axiomax-inf2 10101* Another axiom of infinity in a constructive setting (see ax-infvn 10066). (Contributed by BJ, 14-Nov-2019.) (New usage is discouraged.)
 |-  E. a A. x ( x  e.  a  <->  ( x  =  (/)  \/  E. y  e.  a  x  =  suc  y ) )
 
Theorembj-omex2 10102 Using bounded set induction and the strong axiom of infinity,  om is a set, that is, we recover ax-infvn 10066 (see bj-2inf 10062 for the equivalence of the latter with bj-omex 10067). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  om  e.  _V
 
Theorembj-nn0sucALT 10103* Alternate proof of bj-nn0suc 10089, also constructive but from ax-inf2 10101, hence requiring ax-bdsetind 10093. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  om  <->  ( A  =  (/) 
 \/  E. x  e.  om  A  =  suc  x ) )
 
6.3.8.2  Full induction

In this section, using the axiom of set induction, we prove full induction on the set of natural numbers.

 
Theorembj-findis 10104* Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 10072 for a bounded version not requiring ax-setind 4262. See finds 4323 for a proof in IZF. From this version, it is easy to prove of finds 4323, finds2 4324, finds1 4325. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   =>    |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
 
Theorembj-findisg 10105* Version of bj-findis 10104 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 10104 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   &    |-  F/_ x A   &    |-  F/ x ta   &    |-  ( x  =  A  ->  (
 ph  ->  ta ) )   =>    |-  ( ( ps 
 /\  A. y  e.  om  ( ch  ->  th )
 )  ->  ( A  e.  om  ->  ta )
 )
 
Theorembj-findes 10106 Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 10104 for explanations. From this version, it is easy to prove findes 4326. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( [. (/)  /  x ]. ph 
 /\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
 )  ->  A. x  e. 
 om  ph )
 
6.3.9  Strong collection

In this section, we state the axiom scheme of strong collection, which is part of CZF set theory.

 
Axiomax-strcoll 10107* Axiom scheme of strong collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a
 ( A. x  e.  a  E. y ph  ->  E. b A. y ( y  e.  b  <->  E. x  e.  a  ph ) )
 
Theoremstrcoll2 10108* Version of ax-strcoll 10107 with one DV condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
 |-  ( A. x  e.  a  E. y ph  ->  E. b A. y ( y  e.  b  <->  E. x  e.  a  ph ) )
 
Theoremstrcollnft 10109* Closed form of strcollnf 10110. Version of ax-strcoll 10107 with one DV condition removed, the other DV condition replaced by a non-freeness antecedent, and without initial universal quantifier. (Contributed by BJ, 21-Oct-2019.)
 |-  ( A. x A. y F/ b ph  ->  ( A. x  e.  a  E. y ph  ->  E. b A. y ( y  e.  b  <->  E. x  e.  a  ph ) ) )
 
Theoremstrcollnf 10110* Version of ax-strcoll 10107 with one DV condition removed, the other DV condition replaced by a non-freeness hypothesis, and without initial universal quantifier. (Contributed by BJ, 21-Oct-2019.)
 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. y
 ( y  e.  b  <->  E. x  e.  a  ph ) )
 
TheoremstrcollnfALT 10111* Alternate proof of strcollnf 10110, not using strcollnft 10109. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. y
 ( y  e.  b  <->  E. x  e.  a  ph ) )
 
6.3.10  Subset collection

In this section, we state the axiom scheme of subset collection, which is part of CZF set theory.

 
Axiomax-sscoll 10112* Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  A. y ( y  e.  d  <->  E. x  e.  a  ph ) )
 
Theoremsscoll2 10113* Version of ax-sscoll 10112 with two DV conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
 |-  E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  A. y ( y  e.  d  <->  E. x  e.  a  ph ) )
 
6.3.11  Real numbers
 
Axiomax-ddkcomp 10114 Axiom of Dedekind completeness for Dedekind real numbers: every nonempty upper-bounded located set of reals has a real upper bound. Ideally, this axiom should be "proved" as "axddkcomp" for the real numbers constructed from IZF, and then the axiom ax-ddkcomp 10114 should be used in place of construction specific results. In particular, axcaucvg 6974 should be proved from it. (Contributed by BJ, 24-Oct-2021.)
 |-  (
 ( ( A  C_  RR  /\  A  =/=  (/) )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e. 
 RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
 ( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
 
6.4  Mathbox for David A. Wheeler
 
6.4.1  Allsome quantifier

These are definitions and proofs involving an experimental "allsome" quantifier (aka "all some").

In informal language, statements like "All Martians are green" imply that there is at least one Martian. But it's easy to mistranslate informal language into formal notations because similar statements like  A. x ph  ->  ps do not imply that  ph is ever true, leading to vacuous truths. Some systems include a mechanism to counter this, e.g., PVS allows types to be appended with "+" to declare that they are nonempty. This section presents a different solution to the same problem.

The "allsome" quantifier expressly includes the notion of both "all" and "there exists at least one" (aka some), and is defined to make it easier to more directly express both notions. The hope is that if a quantifier more directly expresses this concept, it will be used instead and reduce the risk of creating formal expressions that look okay but in fact are mistranslations. The term "allsome" was chosen because it's short, easy to say, and clearly hints at the two concepts it combines.

I do not expect this to be used much in metamath, because in metamath there's a general policy of avoiding the use of new definitions unless there are very strong reasons to do so. Instead, my goal is to rigorously define this quantifier and demonstrate a few basic properties of it.

The syntax allows two forms that look like they would be problematic, but they are fine. When applied to a top-level implication we allow  A.! x (
ph  ->  ps ), and when restricted (applied to a class) we allow  A.! x  e.  A ph. The first symbol after the setvar variable must always be  e. if it is the form applied to a class, and since  e. cannot begin a wff, it is unambiguous. The  -> looks like it would be a problem because  ph or  ps might include implications, but any implication arrow  -> within any wff must be surrounded by parentheses, so only the implication arrow of  A.! can follow the wff. The implication syntax would work fine without the parentheses, but I added the parentheses because it makes things clearer inside larger complex expressions, and it's also more consistent with the rest of the syntax.

For more, see "The Allsome Quantifier" by David A. Wheeler at https://dwheeler.com/essays/allsome.html I hope that others will eventually agree that allsome is awesome.

 
Syntaxwalsi 10115 Extend wff definition to include "all some" applied to a top-level implication, which means  ps is true whenever 
ph is true, and there is at least least one  x where  ph is true. (Contributed by David A. Wheeler, 20-Oct-2018.)
 wff  A.! x ( ph  ->  ps )
 
Syntaxwalsc 10116 Extend wff definition to include "all some" applied to a class, which means  ph is true for all  x in  A, and there is at least one  x in  A. (Contributed by David A. Wheeler, 20-Oct-2018.)
 wff  A.! x  e.  A ph
 
Definitiondf-alsi 10117 Define "all some" applied to a top-level implication, which means  ps is true whenever  ph is true and there is at least one  x where  ph is true. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( A.! x ( ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph )
 )
 
Definitiondf-alsc 10118 Define "all some" applied to a class, which means  ph is true for all  x in  A and there is at least one  x in  A. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( A.! x  e.  A ph  <->  (
 A. x  e.  A  ph 
 /\  E. x  x  e.  A ) )
 
Theoremalsconv 10119 There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.)
 |-  ( A.! x ( x  e.  A  ->  ph )  <->  A.! x  e.  A ph )
 
Theoremalsi1d 10120 Deduction rule: Given "all some" applied to a top-level inference, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( ph  ->  A.! x ( ps 
 ->  ch ) )   =>    |-  ( ph  ->  A. x ( ps  ->  ch ) )
 
Theoremalsi2d 10121 Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( ph  ->  A.! x ( ps 
 ->  ch ) )   =>    |-  ( ph  ->  E. x ps )
 
Theoremalsc1d 10122 Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( ph  ->  A.! x  e.  A ps )   =>    |-  ( ph  ->  A. x  e.  A  ps )
 
Theoremalsc2d 10123 Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( ph  ->  A.! x  e.  A ps )   =>    |-  ( ph  ->  E. x  x  e.  A )
 
6.5  Mathbox for Jim Kingdon
 
Theoremqdencn 10124* The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 9798 (and also would hold for  RR  X.  RR with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  Q  =  { z  e.  CC  |  ( ( Re `  z )  e.  QQ  /\  ( Im `  z
 )  e.  QQ ) }   =>    |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
    < Previous  Wrap >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Wrap >