ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icc0r Unicode version

Theorem icc0r 8795
Description: An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
Assertion
Ref Expression
icc0r  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )

Proof of Theorem icc0r
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xrletr 8724 . . . . . . 7  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
213com23 1110 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
323expa 1104 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  <_  x  /\  x  <_  B
)  ->  A  <_  B ) )
43rexlimdva 2433 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  A  <_  B ) )
5 xrlenlt 7084 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
64, 5sylibd 138 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  -.  B  <  A ) )
76con2d 554 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B ) ) )
8 iccval 8789 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,] B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) } )
98eqeq1d 2048 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/) ) )
10 rabeq0 3247 . . . 4  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B ) )
11 ralnex 2316 . . . 4  |-  ( A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B )  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
1210, 11bitri 173 . . 3  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
139, 12syl6bb 185 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) ) )
147, 13sylibrd 158 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   A.wral 2306   E.wrex 2307   {crab 2310   (/)c0 3224   class class class wbr 3764  (class class class)co 5512   RR*cxr 7059    < clt 7060    <_ cle 7061   [,]cicc 8760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-po 4033  df-iso 4034  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-icc 8764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator