HomeHome Intuitionistic Logic Explorer
Theorem List (p. 95 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnsqcld 9401 The naturals are closed under squaring. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  ( A ^ 2 )  e. 
 NN )
 
Theoremnnexpcld 9402 Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( A ^ N )  e. 
 NN )
 
Theoremnn0expcld 9403 Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( A ^ N )  e. 
 NN0 )
 
Theoremrpexpcld 9404 Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( A ^ N )  e.  RR+ )
 
Theoremreexpclzapd 9405 Closure of exponentiation of reals. (Contributed by Jim Kingdon, 13-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( A ^ N )  e.  RR )
 
Theoremresqcld 9406 Closure of square in reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A ^ 2 )  e. 
 RR )
 
Theoremsqge0d 9407 A square of a real is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  0  <_  ( A ^ 2
 ) )
 
Theoremsqgt0apd 9408 The square of a real apart from zero is positive. (Contributed by Jim Kingdon, 13-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  0  <  ( A ^ 2
 ) )
 
Theoremleexp2ad 9409 Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1 
 <_  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ph  ->  ( A ^ M )  <_  ( A ^ N ) )
 
Theoremleexp2rd 9410 Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A 
 <_  1 )   =>    |-  ( ph  ->  ( A ^ N )  <_  ( A ^ M ) )
 
Theoremlt2sqd 9411 The square function on nonnegative reals is strictly monotonic. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A ^
 2 )  <  ( B ^ 2 ) ) )
 
Theoremle2sqd 9412 The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A ^
 2 )  <_  ( B ^ 2 ) ) )
 
Theoremsq11d 9413 The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   &    |-  ( ph  ->  ( A ^ 2 )  =  ( B ^
 2 ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremsq11ap 9414 Analogue to sq11 9326 but for apartness. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( A ^
 2 ) #  ( B ^ 2 )  <->  A #  B )
 )
 
3.7  Elementary real and complex functions
 
3.7.1  The "shift" operation
 
Syntaxcshi 9415 Extend class notation with function shifter.
 class  shift
 
Definitiondf-shft 9416* Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of  CC) and produces a new function on  CC. See shftval 9426 for its value. (Contributed by NM, 20-Jul-2005.)
 |- 
 shift  =  ( f  e.  _V ,  x  e. 
 CC  |->  { <. y ,  z >.  |  ( y  e. 
 CC  /\  ( y  -  x ) f z ) } )
 
Theoremshftlem 9417* Two ways to write a shifted set  ( B  +  A
). (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e. 
 CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
 
Theoremshftuz 9418* A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e. 
 CC  |  ( x  -  A )  e.  ( ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A ) ) )
 
Theoremshftfvalg 9419* The value of the sequence shifter operation is a function on  CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
 )
 
Theoremovshftex 9420 Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
 
Theoremshftfibg 9421 Value of a fiber of the relation  F. (Contributed by Jim Kingdon, 15-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) }
 ) )
 
Theoremshftfval 9422* The value of the sequence shifter operation is a function on  CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
 )
 
Theoremshftdm 9423* Domain of a relation shifted by  A. The set on the right is more commonly notated as  ( dom  F  +  A ) (meaning add  A to every element of  dom  F). (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  dom  F }
 )
 
Theoremshftfib 9424 Value of a fiber of the relation  F. (Contributed by Mario Carneiro, 4-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A )
 " { B }
 )  =  ( F
 " { ( B  -  A ) }
 ) )
 
Theoremshftfn 9425* Functionality and domain of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn 
 { x  e.  CC  |  ( x  -  A )  e.  B }
 )
 
Theoremshftval 9426 Value of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) `
  B )  =  ( F `  ( B  -  A ) ) )
 
Theoremshftval2 9427 Value of a sequence shifted by  A  -  B. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( F  shift  ( A  -  B ) ) `  ( A  +  C ) )  =  ( F `  ( B  +  C ) ) )
 
Theoremshftval3 9428 Value of a sequence shifted by  A  -  B. (Contributed by NM, 20-Jul-2005.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  ( A  -  B ) ) `
  A )  =  ( F `  B ) )
 
Theoremshftval4 9429 Value of a sequence shifted by  -u A. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B )
 ) )
 
Theoremshftval5 9430 Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) `
  ( B  +  A ) )  =  ( F `  B ) )
 
Theoremshftf 9431* Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e. 
 CC  |  ( x  -  A )  e.  B } --> C )
 
Theorem2shfti 9432 Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) 
 shift  B )  =  ( F  shift  ( A  +  B ) ) )
 
Theoremshftidt2 9433 Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( F  shift  0 )  =  ( F  |`  CC )
 
Theoremshftidt 9434 Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  ( ( F 
 shift  0 ) `  A )  =  ( F `  A ) )
 
Theoremshftcan1 9435 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( ( F  shift  A )  shift  -u A ) `  B )  =  ( F `  B ) )
 
Theoremshftcan2 9436 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( ( F  shift  -u A )  shift  A ) `
  B )  =  ( F `  B ) )
 
Theoremshftvalg 9437 Value of a sequence shifted by  A. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( F `  ( B  -  A ) ) )
 
Theoremshftval4g 9438 Value of a sequence shifted by  -u A. (Contributed by Jim Kingdon, 19-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B ) ) )
 
3.7.2  Real and imaginary parts; conjugate
 
Syntaxccj 9439 Extend class notation to include complex conjugate function.
 class  *
 
Syntaxcre 9440 Extend class notation to include real part of a complex number.
 class  Re
 
Syntaxcim 9441 Extend class notation to include imaginary part of a complex number.
 class  Im
 
Definitiondf-cj 9442* Define the complex conjugate function. See cjcli 9513 for its closure and cjval 9445 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e. 
 RR ) ) )
 
Definitiondf-re 9443 Define a function whose value is the real part of a complex number. See reval 9449 for its value, recli 9511 for its closure, and replim 9459 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `
  x ) ) 
 /  2 ) )
 
Definitiondf-im 9444 Define a function whose value is the imaginary part of a complex number. See imval 9450 for its value, imcli 9512 for its closure, and replim 9459 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
 |-  Im  =  ( x  e.  CC  |->  ( Re
 `  ( x  /  _i ) ) )
 
Theoremcjval 9445* The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  =  ( iota_ x  e. 
 CC  ( ( A  +  x )  e. 
 RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
 
Theoremcjth 9446 The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( ( A  +  ( * `  A ) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) )
 
Theoremcjf 9447 Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  * : CC --> CC
 
Theoremcjcl 9448 The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  e.  CC )
 
Theoremreval 9449 The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Re `  A )  =  ( ( A  +  ( * `  A ) )  / 
 2 ) )
 
Theoremimval 9450 The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( Re `  ( A  /  _i ) ) )
 
Theoremimre 9451 The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( Re `  ( -u _i  x.  A ) ) )
 
Theoremreim 9452 The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.)
 |-  ( A  e.  CC  ->  ( Re `  A )  =  ( Im `  ( _i  x.  A ) ) )
 
Theoremrecl 9453 The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Re `  A )  e.  RR )
 
Theoremimcl 9454 The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  e.  RR )
 
Theoremref 9455 Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  Re : CC --> RR
 
Theoremimf 9456 Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  Im : CC --> RR
 
Theoremcrre 9457 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
 
Theoremcrim 9458 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
 
Theoremreplim 9459 Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremremim 9460 Value of the conjugate of a complex number. The value is the real part minus  _i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  =  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremreim0 9461 The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  RR  ->  ( Im `  A )  =  0 )
 
Theoremreim0b 9462 A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
 
Theoremrereb 9463 A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
 
Theoremmulreap 9464 A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e. 
 RR ) )
 
Theoremrere 9465 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.)
 |-  ( A  e.  RR  ->  ( Re `  A )  =  A )
 
Theoremcjreb 9466 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )
 
Theoremrecj 9467 Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Re `  ( * `  A ) )  =  ( Re `  A ) )
 
Theoremreneg 9468 Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Re `  -u A )  =  -u ( Re
 `  A ) )
 
Theoremreadd 9469 Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  +  B ) )  =  (
 ( Re `  A )  +  ( Re `  B ) ) )
 
Theoremresub 9470 Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  -  B ) )  =  (
 ( Re `  A )  -  ( Re `  B ) ) )
 
Theoremremullem 9471 Lemma for remul 9472, immul 9479, and cjmul 9485. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re
 `  ( A  x.  B ) )  =  ( ( ( Re
 `  A )  x.  ( Re `  B ) )  -  (
 ( Im `  A )  x.  ( Im `  B ) ) ) 
 /\  ( Im `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im
 `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B ) )  =  ( ( * `
  A )  x.  ( * `  B ) ) ) )
 
Theoremremul 9472 Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im
 `  A )  x.  ( Im `  B ) ) ) )
 
Theoremremul2 9473 Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B ) )  =  ( A  x.  ( Re `  B ) ) )
 
Theoremredivap 9474 Real part of a division. Related to remul2 9473. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( Re `  ( A 
 /  B ) )  =  ( ( Re
 `  A )  /  B ) )
 
Theoremimcj 9475 Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Im `  ( * `  A ) )  =  -u ( Im `  A ) )
 
Theoremimneg 9476 The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Im `  -u A )  =  -u ( Im
 `  A ) )
 
Theoremimadd 9477 Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B ) )  =  (
 ( Im `  A )  +  ( Im `  B ) ) )
 
Theoremimsub 9478 Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  -  B ) )  =  (
 ( Im `  A )  -  ( Im `  B ) ) )
 
Theoremimmul 9479 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im
 `  A )  x.  ( Re `  B ) ) ) )
 
Theoremimmul2 9480 Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B ) )  =  ( A  x.  ( Im `  B ) ) )
 
Theoremimdivap 9481 Imaginary part of a division. Related to immul2 9480. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( Im `  ( A 
 /  B ) )  =  ( ( Im
 `  A )  /  B ) )
 
Theoremcjre 9482 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.)
 |-  ( A  e.  RR  ->  ( * `  A )  =  A )
 
Theoremcjcj 9483 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( * `  ( * `  A ) )  =  A )
 
Theoremcjadd 9484 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B ) )  =  (
 ( * `  A )  +  ( * `  B ) ) )
 
Theoremcjmul 9485 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B ) )  =  (
 ( * `  A )  x.  ( * `  B ) ) )
 
Theoremipcnval 9486 Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
 
Theoremcjmulrcl 9487 A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  e.  RR )
 
Theoremcjmulval 9488 A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  =  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2
 ) ) )
 
Theoremcjmulge0 9489 A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  0  <_  ( A  x.  ( * `  A ) ) )
 
Theoremcjneg 9490 Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( * `  -u A )  =  -u ( * `
  A ) )
 
Theoremaddcj 9491 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  +  ( * `  A ) )  =  ( 2  x.  ( Re `  A ) ) )
 
Theoremcjsub 9492 Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  -  B ) )  =  (
 ( * `  A )  -  ( * `  B ) ) )
 
Theoremcjexp 9493 Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( * `  ( A ^ N ) )  =  ( ( * `  A ) ^ N ) )
 
Theoremimval2 9494 The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( ( A  -  ( * `  A ) )  /  ( 2  x.  _i ) ) )
 
Theoremre0 9495 The real part of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( Re `  0
 )  =  0
 
Theoremim0 9496 The imaginary part of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( Im `  0
 )  =  0
 
Theoremre1 9497 The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Re `  1
 )  =  1
 
Theoremim1 9498 The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Im `  1
 )  =  0
 
Theoremrei 9499 The real part of  _i. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Re `  _i )  =  0
 
Theoremimi 9500 The imaginary part of  _i. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Im `  _i )  =  1
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >