HomeHome Intuitionistic Logic Explorer
Theorem List (p. 22 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2101-2200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeleq2 2101 Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  ( C  e.  A  <->  C  e.  B ) )
 
Theoremeleq12 2102 Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  e.  C 
 <->  B  e.  D ) )
 
Theoremeleq1i 2103 Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   =>    |-  ( A  e.  C 
 <->  B  e.  C )
 
Theoremeleq2i 2104 Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   =>    |-  ( C  e.  A 
 <->  C  e.  B )
 
Theoremeleq12i 2105 Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  e.  C  <->  B  e.  D )
 
Theoremeleq1d 2106 Deduction from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  e.  C  <->  B  e.  C ) )
 
Theoremeleq2d 2107 Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  e.  A  <->  C  e.  B ) )
 
Theoremeleq12d 2108 Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  e.  C  <->  B  e.  D ) )
 
Theoremeleq1a 2109 A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
 |-  ( A  e.  B  ->  ( C  =  A  ->  C  e.  B ) )
 
Theoremeqeltri 2110 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  B  e.  C   =>    |-  A  e.  C
 
Theoremeqeltrri 2111 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  A  e.  C   =>    |-  B  e.  C
 
Theoremeleqtri 2112 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  B   &    |-  B  =  C   =>    |-  A  e.  C
 
Theoremeleqtrri 2113 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  B   &    |-  C  =  B   =>    |-  A  e.  C
 
Theoremeqeltrd 2114 Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  B  e.  C )   =>    |-  ( ph  ->  A  e.  C )
 
Theoremeqeltrrd 2115 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  A  e.  C )   =>    |-  ( ph  ->  B  e.  C )
 
Theoremeleqtrd 2116 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A  e.  C )
 
Theoremeleqtrrd 2117 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A  e.  C )
 
Theorem3eltr3i 2118 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
 |-  A  e.  B   &    |-  A  =  C   &    |-  B  =  D   =>    |-  C  e.  D
 
Theorem3eltr4i 2119 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
 |-  A  e.  B   &    |-  C  =  A   &    |-  D  =  B   =>    |-  C  e.  D
 
Theorem3eltr3d 2120 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  C  e.  D )
 
Theorem3eltr4d 2121 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ph  ->  C  =  A )   &    |-  ( ph  ->  D  =  B )   =>    |-  ( ph  ->  C  e.  D )
 
Theorem3eltr3g 2122 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  A  =  C   &    |-  B  =  D   =>    |-  ( ph  ->  C  e.  D )
 
Theorem3eltr4g 2123 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  C  =  A   &    |-  D  =  B   =>    |-  ( ph  ->  C  e.  D )
 
Theoremsyl5eqel 2124 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
 |-  A  =  B   &    |-  ( ph  ->  B  e.  C )   =>    |-  ( ph  ->  A  e.  C )
 
Theoremsyl5eqelr 2125 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
 |-  B  =  A   &    |-  ( ph  ->  B  e.  C )   =>    |-  ( ph  ->  A  e.  C )
 
Theoremsyl5eleq 2126 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
 |-  A  e.  B   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A  e.  C )
 
Theoremsyl5eleqr 2127 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
 |-  A  e.  B   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A  e.  C )
 
Theoremsyl6eqel 2128 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
 |-  ( ph  ->  A  =  B )   &    |-  B  e.  C   =>    |-  ( ph  ->  A  e.  C )
 
Theoremsyl6eqelr 2129 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
 |-  ( ph  ->  B  =  A )   &    |-  B  e.  C   =>    |-  ( ph  ->  A  e.  C )
 
Theoremsyl6eleq 2130 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
 |-  ( ph  ->  A  e.  B )   &    |-  B  =  C   =>    |-  ( ph  ->  A  e.  C )
 
Theoremsyl6eleqr 2131 A membership and equality inference. (Contributed by NM, 24-Apr-2005.)
 |-  ( ph  ->  A  e.  B )   &    |-  C  =  B   =>    |-  ( ph  ->  A  e.  C )
 
Theoremeleq2s 2132 Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( A  e.  B  -> 
 ph )   &    |-  C  =  B   =>    |-  ( A  e.  C  ->  ph )
 
Theoremeqneltrd 2133 If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  -.  B  e.  C )   =>    |-  ( ph  ->  -.  A  e.  C )
 
Theoremeqneltrrd 2134 If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  -.  A  e.  C )   =>    |-  ( ph  ->  -.  B  e.  C )
 
Theoremneleqtrd 2135 If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  -.  C  e.  A )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  -.  C  e.  B )
 
Theoremneleqtrrd 2136 If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  -.  C  e.  B )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  -.  C  e.  A )
 
Theoremcleqh 2137* Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqf 2201. (Contributed by NM, 5-Aug-1993.)
 |-  ( y  e.  A  ->  A. x  y  e.  A )   &    |-  ( y  e.  B  ->  A. x  y  e.  B )   =>    |-  ( A  =  B 
 <-> 
 A. x ( x  e.  A  <->  x  e.  B ) )
 
Theoremnelneq 2138 A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
 |-  ( ( A  e.  C  /\  -.  B  e.  C )  ->  -.  A  =  B )
 
Theoremnelneq2 2139 A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.)
 |-  ( ( A  e.  B  /\  -.  A  e.  C )  ->  -.  B  =  C )
 
Theoremeqsb3lem 2140* Lemma for eqsb3 2141. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( [ x  /  y ] y  =  A  <->  x  =  A )
 
Theoremeqsb3 2141* Substitution applied to an atomic wff (class version of equsb3 1825). (Contributed by Rodolfo Medina, 28-Apr-2010.)
 |-  ( [ x  /  y ] y  =  A  <->  x  =  A )
 
Theoremclelsb3 2142* Substitution applied to an atomic wff (class version of elsb3 1852). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( [ x  /  y ] y  e.  A  <->  x  e.  A )
 
Theoremclelsb4 2143* Substitution applied to an atomic wff (class version of elsb4 1853). (Contributed by Jim Kingdon, 22-Nov-2018.)
 |-  ( [ x  /  y ] A  e.  y  <->  A  e.  x )
 
Theoremhbxfreq 2144 A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1361 for equivalence version. (Contributed by NM, 21-Aug-2007.)
 |-  A  =  B   &    |-  (
 y  e.  B  ->  A. x  y  e.  B )   =>    |-  ( y  e.  A  ->  A. x  y  e.  A )
 
Theoremhblem 2145* Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( y  e.  A  ->  A. x  y  e.  A )   =>    |-  ( z  e.  A  ->  A. x  z  e.  A )
 
Theoremabeq2 2146* Equality of a class variable and a class abstraction (also called a class builder). Theorem 5.1 of [Quine] p. 34. This theorem shows the relationship between expressions with class abstractions and expressions with class variables. Note that abbi 2151 and its relatives are among those useful for converting theorems with class variables to equivalent theorems with wff variables, by first substituting a class abstraction for each class variable.

Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable  ph (that has a free variable  x) to a theorem with a class variable  A, we substitute  x  e.  A for  ph throughout and simplify, where  A is a new class variable not already in the wff. Conversely, to convert a theorem with a class variable  A to one with  ph, we substitute  { x  |  ph } for  A throughout and simplify, where  x and  ph are new set and wff variables not already in the wff. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. (Contributed by NM, 5-Aug-1993.)

 |-  ( A  =  { x  |  ph }  <->  A. x ( x  e.  A  <->  ph ) )
 
Theoremabeq1 2147* Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
 |-  ( { x  |  ph
 }  =  A  <->  A. x ( ph  <->  x  e.  A ) )
 
Theoremabeq2i 2148 Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 3-Apr-1996.)
 |-  A  =  { x  |  ph }   =>    |-  ( x  e.  A  <->  ph )
 
Theoremabeq1i 2149 Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 31-Jul-1994.)
 |- 
 { x  |  ph }  =  A   =>    |-  ( ph  <->  x  e.  A )
 
Theoremabeq2d 2150 Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.)
 |-  ( ph  ->  A  =  { x  |  ps } )   =>    |-  ( ph  ->  ( x  e.  A  <->  ps ) )
 
Theoremabbi 2151 Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.)
 |-  ( A. x (
 ph 
 <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )
 
Theoremabbi2i 2152* Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 5-Aug-1993.)
 |-  ( x  e.  A  <->  ph )   =>    |-  A  =  { x  |  ph }
 
Theoremabbii 2153 Equivalent wff's yield equal class abstractions (inference rule). (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   =>    |- 
 { x  |  ph }  =  { x  |  ps }
 
Theoremabbid 2154 Equivalent wff's yield equal class abstractions (deduction rule). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
 
Theoremabbidv 2155* Equivalent wff's yield equal class abstractions (deduction rule). (Contributed by NM, 10-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
 
Theoremabbi2dv 2156* Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
 |-  ( ph  ->  ( x  e.  A  <->  ps ) )   =>    |-  ( ph  ->  A  =  { x  |  ps } )
 
Theoremabbi1dv 2157* Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
 |-  ( ph  ->  ( ps 
 <->  x  e.  A ) )   =>    |-  ( ph  ->  { x  |  ps }  =  A )
 
Theoremabid2 2158* A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.)
 |- 
 { x  |  x  e.  A }  =  A
 
Theoremsb8ab 2159 Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.)
 |- 
 F/ y ph   =>    |- 
 { x  |  ph }  =  { y  |  [ y  /  x ] ph }
 
Theoremcbvab 2160 Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  { x  |  ph
 }  =  { y  |  ps }
 
Theoremcbvabv 2161* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  { x  |  ph
 }  =  { y  |  ps }
 
Theoremclelab 2162* Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.)
 |-  ( A  e.  { x  |  ph }  <->  E. x ( x  =  A  /\  ph )
 )
 
Theoremclabel 2163* Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.)
 |-  ( { x  |  ph
 }  e.  A  <->  E. y ( y  e.  A  /\  A. x ( x  e.  y  <->  ph ) ) )
 
Theoremsbab 2164* The right-hand side of the second equality is a way of representing proper substitution of  y for  x into a class variable. (Contributed by NM, 14-Sep-2003.)
 |-  ( x  =  y 
 ->  A  =  { z  |  [ y  /  x ] z  e.  A } )
 
2.1.3  Class form not-free predicate
 
Syntaxwnfc 2165 Extend wff definition to include the not-free predicate for classes.
 wff  F/_ x A
 
Theoremnfcjust 2166* Justification theorem for df-nfc 2167. (Contributed by Mario Carneiro, 13-Oct-2016.)
 |-  ( A. y F/ x  y  e.  A  <->  A. z F/ x  z  e.  A )
 
Definitiondf-nfc 2167* Define the not-free predicate for classes. This is read " x is not free in  A". Not-free means that the value of  x cannot affect the value of  A, e.g., any occurrence of  x in  A is effectively bound by a quantifier or something that expands to one (such as "there exists at most one"). It is defined in terms of the not-free predicate df-nf 1350 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
 
Theoremnfci 2168* Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x  y  e.  A   =>    |-  F/_ x A
 
Theoremnfcii 2169* Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( y  e.  A  ->  A. x  y  e.  A )   =>    |-  F/_ x A
 
Theoremnfcr 2170* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( F/_ x A  ->  F/ x  y  e.  A )
 
Theoremnfcrii 2171* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  F/_ x A   =>    |-  ( y  e.  A  ->  A. x  y  e.  A )
 
Theoremnfcri 2172* Consequence of the not-free predicate. (Note that unlike nfcr 2170, this does not require  y and  A to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  F/_ x A   =>    |- 
 F/ x  y  e.  A
 
Theoremnfcd 2173* Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x  y  e.  A )   =>    |-  ( ph  ->  F/_ x A )
 
Theoremnfceqi 2174 Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  A  =  B   =>    |-  ( F/_ x A 
 <-> 
 F/_ x B )
 
Theoremnfcxfr 2175 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  A  =  B   &    |-  F/_ x B   =>    |-  F/_ x A
 
Theoremnfcxfrd 2176 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  A  =  B   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x A )
 
Theoremnfceqdf 2177 An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  (
 F/_ x A  <->  F/_ x B ) )
 
Theoremnfcv 2178* If  x is disjoint from  A, then  x is not free in  A. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  F/_ x A
 
Theoremnfcvd 2179* If  x is disjoint from  A, then  x is not free in  A. (Contributed by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )
 
Theoremnfab1 2180 Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  F/_ x { x  |  ph
 }
 
Theoremnfnfc1 2181  x is bound in  F/_ x A. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x F/_ x A
 
Theoremnfab 2182 Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |-  F/_ x { y  | 
 ph }
 
Theoremnfaba1 2183 Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x { y  | 
 A. x ph }
 
Theoremnfnfc 2184 Hypothesis builder for  F/_ y A. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  F/_ x A   =>    |- 
 F/ x F/_ y A
 
Theoremnfeq 2185 Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  =  B
 
Theoremnfel 2186 Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  e.  B
 
Theoremnfeq1 2187* Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   =>    |- 
 F/ x  A  =  B
 
Theoremnfel1 2188* Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   =>    |- 
 F/ x  A  e.  B
 
Theoremnfeq2 2189* Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x B   =>    |- 
 F/ x  A  =  B
 
Theoremnfel2 2190* Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x B   =>    |- 
 F/ x  A  e.  B
 
Theoremnfcrd 2191* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/ x  y  e.  A )
 
Theoremnfeqd 2192 Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  =  B )
 
Theoremnfeld 2193 Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  e.  B )
 
Theoremdrnfc1 2194 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |-  ( A. x  x  =  y  ->  A  =  B )   =>    |-  ( A. x  x  =  y  ->  ( F/_ x A  <->  F/_ y B ) )
 
Theoremdrnfc2 2195 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |-  ( A. x  x  =  y  ->  A  =  B )   =>    |-  ( A. x  x  =  y  ->  ( F/_ z A  <->  F/_ z B ) )
 
Theoremnfabd 2196 Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/_ x { y  |  ps } )
 
Theoremdvelimdc 2197 Deduction form of dvelimc 2198. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |- 
 F/ x ph   &    |-  F/ z ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ z B )   &    |-  ( ph  ->  ( z  =  y  ->  A  =  B )
 )   =>    |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x B ) )
 
Theoremdvelimc 2198 Version of dvelim 1893 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ z B   &    |-  (
 z  =  y  ->  A  =  B )   =>    |-  ( -.  A. x  x  =  y  ->  F/_ x B )
 
Theoremnfcvf 2199 If  x and  y are distinct, then  x is not free in  y. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |-  ( -.  A. x  x  =  y  ->  F/_ x y )
 
Theoremnfcvf2 2200 If  x and  y are distinct, then  y is not free in  x. (Contributed by Mario Carneiro, 5-Dec-2016.)
 |-  ( -.  A. x  x  =  y  ->  F/_ y x )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >