ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegmnf Unicode version

Theorem xnegmnf 8742
Description: Minus -oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegmnf  |-  -e -oo  = +oo

Proof of Theorem xnegmnf
StepHypRef Expression
1 df-xneg 8689 . 2  |-  -e -oo  =  if ( -oo  = +oo , -oo ,  if ( -oo  = -oo , +oo ,  -u -oo ) )
2 mnfnepnf 8698 . . 3  |- -oo  =/= +oo
3 ifnefalse 3342 . . 3  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo , -oo ,  if ( -oo  = -oo , +oo ,  -u -oo ) )  =  if ( -oo  = -oo , +oo ,  -u -oo )
)
42, 3ax-mp 7 . 2  |-  if ( -oo  = +oo , -oo ,  if ( -oo  = -oo , +oo ,  -u -oo ) )  =  if ( -oo  = -oo , +oo ,  -u -oo )
5 eqid 2040 . . 3  |- -oo  = -oo
65iftruei 3337 . 2  |-  if ( -oo  = -oo , +oo ,  -u -oo )  = +oo
71, 4, 63eqtri 2064 1  |-  -e -oo  = +oo
Colors of variables: wff set class
Syntax hints:    = wceq 1243    =/= wne 2204   ifcif 3331   +oocpnf 7057   -oocmnf 7058   -ucneg 7183    -ecxne 8686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-un 4170  ax-cnex 6975
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-rex 2312  df-rab 2315  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-pnf 7062  df-mnf 7063  df-xr 7064  df-xneg 8689
This theorem is referenced by:  xnegcl  8745  xnegneg  8746  xltnegi  8748
  Copyright terms: Public domain W3C validator