ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsspssun Unicode version

Theorem nsspssun 3170
Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
nsspssun  |-  ( -.  A  C_  B  <->  B  C.  ( A  u.  B )
)

Proof of Theorem nsspssun
StepHypRef Expression
1 ssun2 3107 . . . 4  |-  B  C_  ( A  u.  B
)
21biantrur 287 . . 3  |-  ( -.  ( A  u.  B
)  C_  B  <->  ( B  C_  ( A  u.  B
)  /\  -.  ( A  u.  B )  C_  B ) )
3 ssid 2964 . . . . 5  |-  B  C_  B
43biantru 286 . . . 4  |-  ( A 
C_  B  <->  ( A  C_  B  /\  B  C_  B ) )
5 unss 3117 . . . 4  |-  ( ( A  C_  B  /\  B  C_  B )  <->  ( A  u.  B )  C_  B
)
64, 5bitri 173 . . 3  |-  ( A 
C_  B  <->  ( A  u.  B )  C_  B
)
72, 6xchnxbir 606 . 2  |-  ( -.  A  C_  B  <->  ( B  C_  ( A  u.  B
)  /\  -.  ( A  u.  B )  C_  B ) )
8 dfpss3 3030 . 2  |-  ( B 
C.  ( A  u.  B )  <->  ( B  C_  ( A  u.  B
)  /\  -.  ( A  u.  B )  C_  B ) )
97, 8bitr4i 176 1  |-  ( -.  A  C_  B  <->  B  C.  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 97    <-> wb 98    u. cun 2915    C_ wss 2917    C. wpss 2918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pss 2933
This theorem is referenced by:  disjpss  3278
  Copyright terms: Public domain W3C validator