ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssid Structured version   Unicode version

Theorem ssid 2958
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
ssid  C_

Proof of Theorem ssid
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 id 19 . 2
21ssriv 2943 1  C_
Colors of variables: wff set class
Syntax hints:   wcel 1390    C_ wss 2911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925
This theorem is referenced by:  eqimssi  2993  eqimss2i  2994  nsspssun  3164  inv1  3247  disjpss  3272  difid  3286  undifabs  3294  pwidg  3364  elssuni  3599  unimax  3605  intmin  3626  rintm  3735  iunpw  4177  sucprcreg  4227  tfisi  4253  peano5  4264  xpss1  4391  xpss2  4392  residm  4585  resdm  4592  resmpt3  4600  ssrnres  4706  dffn3  4996  fimacnv  5239  tfrlem1  5864  rdgss  5910  1idprl  6566  1idpru  6567  ltexprlemm  6574  elq  8333  expcl  8927
  Copyright terms: Public domain W3C validator