ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssid Unicode version

Theorem ssid 2961
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
ssid  C_

Proof of Theorem ssid
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 id 19 . 2
21ssriv 2946 1  C_
Colors of variables: wff set class
Syntax hints:   wcel 1393    C_ wss 2914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2921  df-ss 2928
This theorem is referenced by:  eqimssi  2996  eqimss2i  2997  nsspssun  3167  inv1  3250  disjpss  3275  difid  3289  undifabs  3297  pwidg  3367  elssuni  3602  unimax  3608  intmin  3629  rintm  3738  iunpw  4180  sucprcreg  4230  tfisi  4256  peano5  4267  xpss1  4394  xpss2  4395  residm  4588  resdm  4595  resmpt3  4603  ssrnres  4709  dffn3  4999  fimacnv  5242  tfrlem1  5868  rdgss  5914  1idprl  6578  1idpru  6579  ltexprlemm  6588  elq  8425  expcl  9020
  Copyright terms: Public domain W3C validator