ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xchnxbir Unicode version

Theorem xchnxbir 606
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchnxbir.1  |-  ( -. 
ph 
<->  ps )
xchnxbir.2  |-  ( ch  <->  ph )
Assertion
Ref Expression
xchnxbir  |-  ( -. 
ch 
<->  ps )

Proof of Theorem xchnxbir
StepHypRef Expression
1 xchnxbir.1 . 2  |-  ( -. 
ph 
<->  ps )
2 xchnxbir.2 . . 3  |-  ( ch  <->  ph )
32bicomi 123 . 2  |-  ( ph  <->  ch )
41, 3xchnxbi 605 1  |-  ( -. 
ch 
<->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  3ioran  900  truxortru  1310  truxorfal  1311  falxortru  1312  falxorfal  1313  nsspssun  3170  intirr  4711
  Copyright terms: Public domain W3C validator