Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xchnxbir | Unicode version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | |
xchnxbir.2 |
Ref | Expression |
---|---|
xchnxbir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 | |
2 | xchnxbir.2 | . . 3 | |
3 | 2 | bicomi 123 | . 2 |
4 | 1, 3 | xchnxbi 605 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 3ioran 900 truxortru 1310 truxorfal 1311 falxortru 1312 falxorfal 1313 nsspssun 3170 intirr 4711 |
Copyright terms: Public domain | W3C validator |