ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq12i Unicode version

Theorem ineq12i 3136
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
ineq1i.1  |-  A  =  B
ineq12i.2  |-  C  =  D
Assertion
Ref Expression
ineq12i  |-  ( A  i^i  C )  =  ( B  i^i  D
)

Proof of Theorem ineq12i
StepHypRef Expression
1 ineq1i.1 . 2  |-  A  =  B
2 ineq12i.2 . 2  |-  C  =  D
3 ineq12 3133 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )
41, 2, 3mp2an 402 1  |-  ( A  i^i  C )  =  ( B  i^i  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1243    i^i cin 2916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924
This theorem is referenced by:  undir  3187  difindir  3192  inrab  3209  inrab2  3210  inxp  4470  resindi  4627  resindir  4628  cnvin  4731  rnin  4733  inimass  4740  funtp  4952  imainlem  4980  imain  4981  offres  5762  enq0enq  6529
  Copyright terms: Public domain W3C validator