Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq12i | Unicode version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | |
ineq12i.2 |
Ref | Expression |
---|---|
ineq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 | |
2 | ineq12i.2 | . 2 | |
3 | ineq12 3133 | . 2 | |
4 | 1, 2, 3 | mp2an 402 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 cin 2916 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 |
This theorem is referenced by: undir 3187 difindir 3192 inrab 3209 inrab2 3210 inxp 4470 resindi 4627 resindir 4628 cnvin 4731 rnin 4733 inimass 4740 funtp 4952 imainlem 4980 imain 4981 offres 5762 enq0enq 6529 |
Copyright terms: Public domain | W3C validator |