ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexun Unicode version

Theorem rexun 3123
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
rexun  |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )

Proof of Theorem rexun
StepHypRef Expression
1 df-rex 2312 . 2  |-  ( E. x  e.  ( A  u.  B ) ph  <->  E. x ( x  e.  ( A  u.  B
)  /\  ph ) )
2 19.43 1519 . . 3  |-  ( E. x ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
)  <->  ( E. x
( x  e.  A  /\  ph )  \/  E. x ( x  e.  B  /\  ph )
) )
3 elun 3084 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
43anbi1i 431 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
5 andir 732 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
64, 5bitri 173 . . . 4  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
) )
76exbii 1496 . . 3  |-  ( E. x ( x  e.  ( A  u.  B
)  /\  ph )  <->  E. x
( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
8 df-rex 2312 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
9 df-rex 2312 . . . 4  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
108, 9orbi12i 681 . . 3  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  B  ph )  <->  ( E. x ( x  e.  A  /\  ph )  \/  E. x ( x  e.  B  /\  ph ) ) )
112, 7, 103bitr4i 201 . 2  |-  ( E. x ( x  e.  ( A  u.  B
)  /\  ph )  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
121, 11bitri 173 1  |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    \/ wo 629   E.wex 1381    e. wcel 1393   E.wrex 2307    u. cun 2915
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922
This theorem is referenced by:  rexprg  3422  rextpg  3424  iunxun  3735
  Copyright terms: Public domain W3C validator