Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif2ss Unicode version

Theorem difdif2ss 3194
 Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
difdif2ss

Proof of Theorem difdif2ss
StepHypRef Expression
1 inssdif 3173 . . . 4
2 unss2 3114 . . . 4
31, 2ax-mp 7 . . 3
4 difindiss 3191 . . 3
53, 4sstri 2954 . 2
6 invdif 3179 . . . 4
76eqcomi 2044 . . 3
87difeq2i 3059 . 2
95, 8sseqtr4i 2978 1
 Colors of variables: wff set class Syntax hints:  cvv 2557   cdif 2914   cun 2915   cin 2916   wss 2917 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator