ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2 Unicode version

Theorem fun2 5064
Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
fun2  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> C )

Proof of Theorem fun2
StepHypRef Expression
1 fun 5063 . 2  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  C ) )
2 unidm 3086 . . 3  |-  ( C  u.  C )  =  C
3 feq3 5032 . . 3  |-  ( ( C  u.  C )  =  C  ->  (
( F  u.  G
) : ( A  u.  B ) --> ( C  u.  C )  <-> 
( F  u.  G
) : ( A  u.  B ) --> C ) )
42, 3ax-mp 7 . 2  |-  ( ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  C )  <->  ( F  u.  G ) : ( A  u.  B ) --> C )
51, 4sylib 127 1  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    u. cun 2915    i^i cin 2916   (/)c0 3224   -->wf 4898
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-f 4906
This theorem is referenced by:  ac6sfi  6352  fseq1p1m1  8956
  Copyright terms: Public domain W3C validator