ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equncomi Structured version   Unicode version

Theorem equncomi 3083
Description: Inference form of equncom 3082. (Contributed by Alan Sare, 18-Feb-2012.)
Hypothesis
Ref Expression
equncomi.1  u.  C
Assertion
Ref Expression
equncomi  C  u.

Proof of Theorem equncomi
StepHypRef Expression
1 equncomi.1 . 2  u.  C
2 equncom 3082 . 2  u.  C  C  u.
31, 2mpbi 133 1  C  u.
Colors of variables: wff set class
Syntax hints:   wceq 1242    u. cun 2909
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916
This theorem is referenced by:  disjssun  3279  difprsn1  3494  unidmrn  4793
  Copyright terms: Public domain W3C validator