Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12d Unicode version

Theorem uneq12d 3098
 Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
uneq1d.1
uneq12d.2
Assertion
Ref Expression
uneq12d

Proof of Theorem uneq12d
StepHypRef Expression
1 uneq1d.1 . 2
2 uneq12d.2 . 2
3 uneq12 3092 . 2
41, 2, 3syl2anc 391 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1243   cun 2915 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922 This theorem is referenced by:  disjpr2  3434  diftpsn3  3505  suceq  4139  rnpropg  4800  fntpg  4955  foun  5145  fnimapr  5233  fprg  5346  fsnunfv  5363  fsnunres  5364  tfrlemi1  5946  ereq1  6113  fztp  8940  fzsuc2  8941  fseq1p1m1  8956
 Copyright terms: Public domain W3C validator