Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjpr2 | Unicode version |
Description: The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) |
Ref | Expression |
---|---|
disjpr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3382 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | 2 | ineq2d 3138 | . 2 |
4 | indi 3184 | . . 3 | |
5 | df-pr 3382 | . . . . . . . 8 | |
6 | 5 | ineq1i 3134 | . . . . . . 7 |
7 | indir 3186 | . . . . . . 7 | |
8 | 6, 7 | eqtri 2060 | . . . . . 6 |
9 | disjsn2 3433 | . . . . . . . . . 10 | |
10 | 9 | adantr 261 | . . . . . . . . 9 |
11 | 10 | adantr 261 | . . . . . . . 8 |
12 | disjsn2 3433 | . . . . . . . . . 10 | |
13 | 12 | adantl 262 | . . . . . . . . 9 |
14 | 13 | adantr 261 | . . . . . . . 8 |
15 | 11, 14 | jca 290 | . . . . . . 7 |
16 | un00 3263 | . . . . . . 7 | |
17 | 15, 16 | sylib 127 | . . . . . 6 |
18 | 8, 17 | syl5eq 2084 | . . . . 5 |
19 | 5 | ineq1i 3134 | . . . . . . 7 |
20 | indir 3186 | . . . . . . 7 | |
21 | 19, 20 | eqtri 2060 | . . . . . 6 |
22 | disjsn2 3433 | . . . . . . . . . 10 | |
23 | 22 | adantr 261 | . . . . . . . . 9 |
24 | 23 | adantl 262 | . . . . . . . 8 |
25 | disjsn2 3433 | . . . . . . . . . 10 | |
26 | 25 | adantl 262 | . . . . . . . . 9 |
27 | 26 | adantl 262 | . . . . . . . 8 |
28 | 24, 27 | jca 290 | . . . . . . 7 |
29 | un00 3263 | . . . . . . 7 | |
30 | 28, 29 | sylib 127 | . . . . . 6 |
31 | 21, 30 | syl5eq 2084 | . . . . 5 |
32 | 18, 31 | uneq12d 3098 | . . . 4 |
33 | un0 3251 | . . . 4 | |
34 | 32, 33 | syl6eq 2088 | . . 3 |
35 | 4, 34 | syl5eq 2084 | . 2 |
36 | 3, 35 | eqtrd 2072 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wceq 1243 wne 2204 cun 2915 cin 2916 c0 3224 csn 3375 cpr 3376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-sn 3381 df-pr 3382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |