ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprg Unicode version

Theorem fprg 5346
Description: A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.)
Assertion
Ref Expression
fprg  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)

Proof of Theorem fprg
StepHypRef Expression
1 fnprg 4954 . 2  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }
)
2 rnsnopg 4799 . . . . . . 7  |-  ( A  e.  E  ->  ran  {
<. A ,  C >. }  =  { C }
)
32adantr 261 . . . . . 6  |-  ( ( A  e.  E  /\  B  e.  F )  ->  ran  { <. A ,  C >. }  =  { C } )
433ad2ant1 925 . . . . 5  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. }  =  { C }
)
5 rnsnopg 4799 . . . . . . 7  |-  ( B  e.  F  ->  ran  {
<. B ,  D >. }  =  { D }
)
65adantl 262 . . . . . 6  |-  ( ( A  e.  E  /\  B  e.  F )  ->  ran  { <. B ,  D >. }  =  { D } )
763ad2ant1 925 . . . . 5  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. B ,  D >. }  =  { D }
)
84, 7uneq12d 3098 . . . 4  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } ) )
9 df-pr 3382 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
109rneqi 4562 . . . . 5  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
11 rnun 4732 . . . . 5  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
1210, 11eqtri 2060 . . . 4  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
13 df-pr 3382 . . . 4  |-  { C ,  D }  =  ( { C }  u.  { D } )
148, 12, 133eqtr4g 2097 . . 3  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. }  =  { C ,  D } )
15 eqimss 2997 . . 3  |-  ( ran 
{ <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } )
1614, 15syl 14 . 2  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } )
17 df-f 4906 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } : { A ,  B } --> { C ,  D }  <->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  { <. A ,  C >. ,  <. B ,  D >. }  C_  { C ,  D } ) )
181, 16, 17sylanbrc 394 1  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393    =/= wne 2204    u. cun 2915    C_ wss 2917   {csn 3375   {cpr 3376   <.cop 3378   ran crn 4346    Fn wfn 4897   -->wf 4898
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-f 4906
This theorem is referenced by:  ftpg  5347
  Copyright terms: Public domain W3C validator