ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabssdv Unicode version

Theorem rabssdv 3020
Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
rabssdv.1  |-  ( (
ph  /\  x  e.  A  /\  ps )  ->  x  e.  B )
Assertion
Ref Expression
rabssdv  |-  ( ph  ->  { x  e.  A  |  ps }  C_  B
)
Distinct variable groups:    x, B    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rabssdv
StepHypRef Expression
1 rabssdv.1 . . . 4  |-  ( (
ph  /\  x  e.  A  /\  ps )  ->  x  e.  B )
213exp 1103 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  x  e.  B ) ) )
32ralrimiv 2391 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  ->  x  e.  B ) )
4 rabss 3017 . 2  |-  ( { x  e.  A  |  ps }  C_  B  <->  A. x  e.  A  ( ps  ->  x  e.  B ) )
53, 4sylibr 137 1  |-  ( ph  ->  { x  e.  A  |  ps }  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 885    e. wcel 1393   A.wral 2306   {crab 2310    C_ wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rab 2315  df-in 2924  df-ss 2931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator