ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq12i Structured version   Unicode version

Theorem difeq12i 3054
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1
difeq12i.2  C  D
Assertion
Ref Expression
difeq12i 
\  C  \  D

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3
21difeq1i 3052 . 2 
\  C  \  C
3 difeq12i.2 . . 3  C  D
43difeq2i 3053 . 2 
\  C  \  D
52, 4eqtri 2057 1 
\  C  \  D
Colors of variables: wff set class
Syntax hints:   wceq 1242    \ cdif 2908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rab 2309  df-dif 2914
This theorem is referenced by:  difrab  3205  imadiflem  4921  imadif  4922
  Copyright terms: Public domain W3C validator