Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difss2 | GIF version |
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difss2 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
2 | difss 3070 | . 2 ⊢ (𝐵 ∖ 𝐶) ⊆ 𝐵 | |
3 | 1, 2 | syl6ss 2957 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∖ cdif 2914 ⊆ wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 |
This theorem is referenced by: difss2d 3073 |
Copyright terms: Public domain | W3C validator |