Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspsstr GIF version

Theorem sspsstr 3050
 Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
Assertion
Ref Expression
sspsstr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sspsstr
StepHypRef Expression
1 id 19 . . 3 (𝐴𝐵𝐴𝐵)
2 pssss 3039 . . 3 (𝐵𝐶𝐵𝐶)
31, 2sylan9ss 2958 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 sspssn 3048 . . . 4 ¬ (𝐶𝐵𝐵𝐶)
5 sseq1 2966 . . . . 5 (𝐴 = 𝐶 → (𝐴𝐵𝐶𝐵))
65anbi1d 438 . . . 4 (𝐴 = 𝐶 → ((𝐴𝐵𝐵𝐶) ↔ (𝐶𝐵𝐵𝐶)))
74, 6mtbiri 600 . . 3 (𝐴 = 𝐶 → ¬ (𝐴𝐵𝐵𝐶))
87con2i 557 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴 = 𝐶)
9 dfpss2 3029 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 = 𝐶))
103, 8, 9sylanbrc 394 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   = wceq 1243   ⊆ wss 2917   ⊊ wpss 2918 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-ne 2206  df-in 2924  df-ss 2931  df-pss 2933 This theorem is referenced by:  sspsstrd  3053
 Copyright terms: Public domain W3C validator