HomeHome Intuitionistic Logic Explorer
Theorem List (p. 24 of 74)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2301-2400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrexbidva 2301* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 9-Mar-1997.)
((φ x A) → (ψχ))       (φ → (x A ψx A χ))
 
Theoremralbid 2302 Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
xφ    &   (φ → (ψχ))       (φ → (x A ψx A χ))
 
Theoremrexbid 2303 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
xφ    &   (φ → (ψχ))       (φ → (x A ψx A χ))
 
Theoremralbidv 2304* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 20-Nov-1994.)
(φ → (ψχ))       (φ → (x A ψx A χ))
 
Theoremrexbidv 2305* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 20-Nov-1994.)
(φ → (ψχ))       (φ → (x A ψx A χ))
 
Theoremralbidv2 2306* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 6-Apr-1997.)
(φ → ((x Aψ) ↔ (x Bχ)))       (φ → (x A ψx B χ))
 
Theoremrexbidv2 2307* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 22-May-1999.)
(φ → ((x A ψ) ↔ (x B χ)))       (φ → (x A ψx B χ))
 
Theoremralbii 2308 Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.)
(φψ)       (x A φx A ψ)
 
Theoremrexbii 2309 Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.)
(φψ)       (x A φx A ψ)
 
Theorem2ralbii 2310 Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
(φψ)       (x A y B φx A y B ψ)
 
Theorem2rexbii 2311 Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
(φψ)       (x A y B φx A y B ψ)
 
Theoremralbii2 2312 Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.)
((x Aφ) ↔ (x Bψ))       (x A φx B ψ)
 
Theoremrexbii2 2313 Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
((x A φ) ↔ (x B ψ))       (x A φx B ψ)
 
Theoremraleqbii 2314 Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
A = B    &   (ψχ)       (x A ψx B χ)
 
Theoremrexeqbii 2315 Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
A = B    &   (ψχ)       (x A ψx B χ)
 
Theoremralbiia 2316 Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
(x A → (φψ))       (x A φx A ψ)
 
Theoremrexbiia 2317 Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
(x A → (φψ))       (x A φx A ψ)
 
Theorem2rexbiia 2318* Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
((x A y B) → (φψ))       (x A y B φx A y B ψ)
 
Theoremr2alf 2319* Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
yA       (x A y B φxy((x A y B) → φ))
 
Theoremr2exf 2320* Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
yA       (x A y B φxy((x A y B) φ))
 
Theoremr2al 2321* Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
(x A y B φxy((x A y B) → φ))
 
Theoremr2ex 2322* Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.)
(x A y B φxy((x A y B) φ))
 
Theorem2ralbida 2323* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 24-Feb-2004.)
xφ    &   yφ    &   ((φ (x A y B)) → (ψχ))       (φ → (x A y B ψx A y B χ))
 
Theorem2ralbidva 2324* Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 4-Mar-1997.)
((φ (x A y B)) → (ψχ))       (φ → (x A y B ψx A y B χ))
 
Theorem2rexbidva 2325* Formula-building rule for restricted existential quantifiers (deduction rule). (Contributed by NM, 15-Dec-2004.)
((φ (x A y B)) → (ψχ))       (φ → (x A y B ψx A y B χ))
 
Theorem2ralbidv 2326* Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.)
(φ → (ψχ))       (φ → (x A y B ψx A y B χ))
 
Theorem2rexbidv 2327* Formula-building rule for restricted existential quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.)
(φ → (ψχ))       (φ → (x A y B ψx A y B χ))
 
Theoremrexralbidv 2328* Formula-building rule for restricted quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.)
(φ → (ψχ))       (φ → (x A y B ψx A y B χ))
 
Theoremralinexa 2329 A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
(x A (φ → ¬ ψ) ↔ ¬ x A (φ ψ))
 
Theoremrisset 2330* Two ways to say "A belongs to B." (Contributed by NM, 22-Nov-1994.)
(A Bx B x = A)
 
Theoremhbral 2331 Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by David Abernethy, 13-Dec-2009.)
(y Ax y A)    &   (φxφ)       (y A φxy A φ)
 
Theoremhbra1 2332 x is not free in x Aφ. (Contributed by NM, 18-Oct-1996.)
(x A φxx A φ)
 
Theoremnfra1 2333 x is not free in x Aφ. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.)
xx A φ
 
Theoremnfraldxy 2334* Not-free for restricted universal quantification where x and y are distinct. See nfraldya 2336 for a version with y and A distinct instead. (Contributed by Jim Kingdon, 29-May-2018.)
yφ    &   (φxA)    &   (φ → Ⅎxψ)       (φ → Ⅎxy A ψ)
 
Theoremnfrexdxy 2335* Not-free for restricted existential quantification where x and y are distinct. See nfrexdya 2337 for a version with y and A distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
yφ    &   (φxA)    &   (φ → Ⅎxψ)       (φ → Ⅎxy A ψ)
 
Theoremnfraldya 2336* Not-free for restricted universal quantification where y and A are distinct. See nfraldxy 2334 for a version with x and y distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
yφ    &   (φxA)    &   (φ → Ⅎxψ)       (φ → Ⅎxy A ψ)
 
Theoremnfrexdya 2337* Not-free for restricted existential quantification where y and A are distinct. See nfrexdxy 2335 for a version with x and y distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
yφ    &   (φxA)    &   (φ → Ⅎxψ)       (φ → Ⅎxy A ψ)
 
Theoremnfralxy 2338* Not-free for restricted universal quantification where x and y are distinct. See nfralya 2340 for a version with y and A distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
xA    &   xφ       xy A φ
 
Theoremnfrexxy 2339* Not-free for restricted existential quantification where x and y are distinct. See nfrexya 2341 for a version with y and A distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
xA    &   xφ       xy A φ
 
Theoremnfralya 2340* Not-free for restricted universal quantification where y and A are distinct. See nfralxy 2338 for a version with x and y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
xA    &   xφ       xy A φ
 
Theoremnfrexya 2341* Not-free for restricted existential quantification where y and A are distinct. See nfrexxy 2339 for a version with x and y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
xA    &   xφ       xy A φ
 
Theoremnfra2xy 2342* Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.)
yx A y B φ
 
Theoremnfre1 2343 x is not free in x Aφ. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
xx A φ
 
Theoremr3al 2344* Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
(x A y B z 𝐶 φxyz((x A y B z 𝐶) → φ))
 
Theoremalral 2345 Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
(xφx A φ)
 
Theoremrexex 2346 Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
(x A φxφ)
 
Theoremrsp 2347 Restricted specialization. (Contributed by NM, 17-Oct-1996.)
(x A φ → (x Aφ))
 
Theoremrspe 2348 Restricted specialization. (Contributed by NM, 12-Oct-1999.)
((x A φ) → x A φ)
 
Theoremrsp2 2349 Restricted specialization. (Contributed by NM, 11-Feb-1997.)
(x A y B φ → ((x A y B) → φ))
 
Theoremrsp2e 2350 Restricted specialization. (Contributed by FL, 4-Jun-2012.)
((x A y B φ) → x A y B φ)
 
Theoremrspec 2351 Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
x A φ       (x Aφ)
 
Theoremrgen 2352 Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
(x Aφ)       x A φ
 
Theoremrgen2a 2353* Generalization rule for restricted quantification. Note that x and y needn't be distinct (and illustrates the use of dvelimor 1876). (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.)
((x A y A) → φ)       x A y A φ
 
Theoremrgenw 2354 Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.)
φ       x A φ
 
Theoremrgen2w 2355 Generalization rule for restricted quantification. Note that x and y needn't be distinct. (Contributed by NM, 18-Jun-2014.)
φ       x A y B φ
 
Theoremmprg 2356 Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.)
(x A φψ)    &   (x Aφ)       ψ
 
Theoremmprgbir 2357 Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.)
(φx A ψ)    &   (x Aψ)       φ
 
Theoremralim 2358 Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.)
(x A (φψ) → (x A φx A ψ))
 
Theoremralimi2 2359 Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.)
((x Aφ) → (x Bψ))       (x A φx B ψ)
 
Theoremralimia 2360 Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
(x A → (φψ))       (x A φx A ψ)
 
Theoremralimiaa 2361 Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
((x A φ) → ψ)       (x A φx A ψ)
 
Theoremralimi 2362 Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.)
(φψ)       (x A φx A ψ)
 
Theoremral2imi 2363 Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
(φ → (ψχ))       (x A φ → (x A ψx A χ))
 
Theoremralimdaa 2364 Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.)
xφ    &   ((φ x A) → (ψχ))       (φ → (x A ψx A χ))
 
Theoremralimdva 2365* Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
((φ x A) → (ψχ))       (φ → (x A ψx A χ))
 
Theoremralimdv 2366* Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.)
(φ → (ψχ))       (φ → (x A ψx A χ))
 
Theoremralimdv2 2367* Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.)
(φ → ((x Aψ) → (x Bχ)))       (φ → (x A ψx B χ))
 
Theoremralrimi 2368 Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
xφ    &   (φ → (x Aψ))       (φx A ψ)
 
Theoremralrimiv 2369* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.)
(φ → (x Aψ))       (φx A ψ)
 
Theoremralrimiva 2370* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Jan-2006.)
((φ x A) → ψ)       (φx A ψ)
 
Theoremralrimivw 2371* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.)
(φψ)       (φx A ψ)
 
Theoremr19.21t 2372 Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers (closed theorem version). (Contributed by NM, 1-Mar-2008.)
(Ⅎxφ → (x A (φψ) ↔ (φx A ψ)))
 
Theoremr19.21 2373 Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by Scott Fenton, 30-Mar-2011.)
xφ       (x A (φψ) ↔ (φx A ψ))
 
Theoremr19.21v 2374* Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(x A (φψ) ↔ (φx A ψ))
 
Theoremralrimd 2375 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.)
xφ    &   xψ    &   (φ → (ψ → (x Aχ)))       (φ → (ψx A χ))
 
Theoremralrimdv 2376* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.)
(φ → (ψ → (x Aχ)))       (φ → (ψx A χ))
 
Theoremralrimdva 2377* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.)
((φ x A) → (ψχ))       (φ → (ψx A χ))
 
Theoremralrimivv 2378* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
(φ → ((x A y B) → ψ))       (φx A y B ψ)
 
Theoremralrimivva 2379* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.)
((φ (x A y B)) → ψ)       (φx A y B ψ)
 
Theoremralrimivvva 2380* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.)
((φ (x A y B z 𝐶)) → ψ)       (φx A y B z 𝐶 ψ)
 
Theoremralrimdvv 2381* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
(φ → (ψ → ((x A y B) → χ)))       (φ → (ψx A y B χ))
 
Theoremralrimdvva 2382* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
((φ (x A y B)) → (ψχ))       (φ → (ψx A y B χ))
 
Theoremrgen2 2383* Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
((x A y B) → φ)       x A y B φ
 
Theoremrgen3 2384* Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
((x A y B z 𝐶) → φ)       x A y B z 𝐶 φ
 
Theoremr19.21bi 2385 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
(φx A ψ)       ((φ x A) → ψ)
 
Theoremrspec2 2386 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
x A y B φ       ((x A y B) → φ)
 
Theoremrspec3 2387 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
x A y B z 𝐶 φ       ((x A y B z 𝐶) → φ)
 
Theoremr19.21be 2388 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.)
(φx A ψ)       x A (φψ)
 
Theoremnrex 2389 Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
(x A → ¬ ψ)        ¬ x A ψ
 
Theoremnrexdv 2390* Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
((φ x A) → ¬ ψ)       (φ → ¬ x A ψ)
 
Theoremrexim 2391 Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(x A (φψ) → (x A φx A ψ))
 
Theoremreximia 2392 Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.)
(x A → (φψ))       (x A φx A ψ)
 
Theoremreximi2 2393 Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
((x A φ) → (x B ψ))       (x A φx B ψ)
 
Theoremreximi 2394 Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.)
(φψ)       (x A φx A ψ)
 
Theoremreximdai 2395 Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
xφ    &   (φ → (x A → (ψχ)))       (φ → (x A ψx A χ))
 
Theoremreximdv2 2396* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.)
(φ → ((x A ψ) → (x B χ)))       (φ → (x A ψx B χ))
 
Theoremreximdvai 2397* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.)
(φ → (x A → (ψχ)))       (φ → (x A ψx A χ))
 
Theoremreximdv 2398* Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.)
(φ → (ψχ))       (φ → (x A ψx A χ))
 
Theoremreximdva 2399* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
((φ x A) → (ψχ))       (φ → (x A ψx A χ))
 
Theoremr19.12 2400* Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(x A y B φy B x A φ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7362
  Copyright terms: Public domain < Previous  Next >