Theorem List for Intuitionistic Logic Explorer - 2301-2400 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | neleq1 2301 |
Equality theorem for negated membership. (Contributed by NM,
20-Nov-1994.)
|
⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
|
Theorem | neleq2 2302 |
Equality theorem for negated membership. (Contributed by NM,
20-Nov-1994.)
|
⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) |
|
Theorem | neleq12d 2303 |
Equality theorem for negated membership. (Contributed by FL,
10-Aug-2016.)
|
⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
|
Theorem | nfnel 2304 |
Bound-variable hypothesis builder for negated membership. (Contributed
by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro,
7-Oct-2016.)
|
⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ∉ 𝐵 |
|
Theorem | nfneld 2305 |
Bound-variable hypothesis builder for negated membership. (Contributed
by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro,
7-Oct-2016.)
|
⊢ (𝜑 → Ⅎ𝑥𝐴)
& ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
|
2.1.5 Restricted quantification
|
|
Syntax | wral 2306 |
Extend wff notation to include restricted universal quantification.
|
wff ∀𝑥 ∈ 𝐴 𝜑 |
|
Syntax | wrex 2307 |
Extend wff notation to include restricted existential quantification.
|
wff ∃𝑥 ∈ 𝐴 𝜑 |
|
Syntax | wreu 2308 |
Extend wff notation to include restricted existential uniqueness.
|
wff ∃!𝑥 ∈ 𝐴 𝜑 |
|
Syntax | wrmo 2309 |
Extend wff notation to include restricted "at most one."
|
wff ∃*𝑥 ∈ 𝐴 𝜑 |
|
Syntax | crab 2310 |
Extend class notation to include the restricted class abstraction (class
builder).
|
class {𝑥 ∈ 𝐴 ∣ 𝜑} |
|
Definition | df-ral 2311 |
Define restricted universal quantification. Special case of Definition
4.15(3) of [TakeutiZaring] p. 22.
(Contributed by NM, 19-Aug-1993.)
|
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
|
Definition | df-rex 2312 |
Define restricted existential quantification. Special case of Definition
4.15(4) of [TakeutiZaring] p. 22.
(Contributed by NM, 30-Aug-1993.)
|
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
|
Definition | df-reu 2313 |
Define restricted existential uniqueness. (Contributed by NM,
22-Nov-1994.)
|
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
|
Definition | df-rmo 2314 |
Define restricted "at most one". (Contributed by NM, 16-Jun-2017.)
|
⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
|
Definition | df-rab 2315 |
Define a restricted class abstraction (class builder), which is the class
of all 𝑥 in 𝐴 such that 𝜑 is true. Definition of
[TakeutiZaring] p. 20. (Contributed
by NM, 22-Nov-1994.)
|
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
|
Theorem | ralnex 2316 |
Relationship between restricted universal and existential quantifiers.
(Contributed by NM, 21-Jan-1997.)
|
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
|
Theorem | rexnalim 2317 |
Relationship between restricted universal and existential quantifiers. In
classical logic this would be a biconditional. (Contributed by Jim
Kingdon, 17-Aug-2018.)
|
⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
|
Theorem | ralexim 2318 |
Relationship between restricted universal and existential quantifiers.
(Contributed by Jim Kingdon, 17-Aug-2018.)
|
⊢ (∀𝑥 ∈ 𝐴 𝜑 → ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
|
Theorem | rexalim 2319 |
Relationship between restricted universal and existential quantifiers.
(Contributed by Jim Kingdon, 17-Aug-2018.)
|
⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
|
Theorem | ralbida 2320 |
Formula-building rule for restricted universal quantifier (deduction
rule). (Contributed by NM, 6-Oct-2003.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | rexbida 2321 |
Formula-building rule for restricted existential quantifier (deduction
rule). (Contributed by NM, 6-Oct-2003.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralbidva 2322* |
Formula-building rule for restricted universal quantifier (deduction
rule). (Contributed by NM, 4-Mar-1997.)
|
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | rexbidva 2323* |
Formula-building rule for restricted existential quantifier (deduction
rule). (Contributed by NM, 9-Mar-1997.)
|
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralbid 2324 |
Formula-building rule for restricted universal quantifier (deduction
rule). (Contributed by NM, 27-Jun-1998.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | rexbid 2325 |
Formula-building rule for restricted existential quantifier (deduction
rule). (Contributed by NM, 27-Jun-1998.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralbidv 2326* |
Formula-building rule for restricted universal quantifier (deduction
rule). (Contributed by NM, 20-Nov-1994.)
|
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | rexbidv 2327* |
Formula-building rule for restricted existential quantifier (deduction
rule). (Contributed by NM, 20-Nov-1994.)
|
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralbidv2 2328* |
Formula-building rule for restricted universal quantifier (deduction
rule). (Contributed by NM, 6-Apr-1997.)
|
⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
|
Theorem | rexbidv2 2329* |
Formula-building rule for restricted existential quantifier (deduction
rule). (Contributed by NM, 22-May-1999.)
|
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
|
Theorem | ralbii 2330 |
Inference adding restricted universal quantifier to both sides of an
equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario
Carneiro, 17-Oct-2016.)
|
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
|
Theorem | rexbii 2331 |
Inference adding restricted existential quantifier to both sides of an
equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario
Carneiro, 17-Oct-2016.)
|
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
|
Theorem | 2ralbii 2332 |
Inference adding two restricted universal quantifiers to both sides of
an equivalence. (Contributed by NM, 1-Aug-2004.)
|
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
|
Theorem | 2rexbii 2333 |
Inference adding two restricted existential quantifiers to both sides of
an equivalence. (Contributed by NM, 11-Nov-1995.)
|
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
|
Theorem | ralbii2 2334 |
Inference adding different restricted universal quantifiers to each side
of an equivalence. (Contributed by NM, 15-Aug-2005.)
|
⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
|
Theorem | rexbii2 2335 |
Inference adding different restricted existential quantifiers to each
side of an equivalence. (Contributed by NM, 4-Feb-2004.)
|
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
|
Theorem | raleqbii 2336 |
Equality deduction for restricted universal quantifier, changing both
formula and quantifier domain. Inference form. (Contributed by David
Moews, 1-May-2017.)
|
⊢ 𝐴 = 𝐵
& ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) |
|
Theorem | rexeqbii 2337 |
Equality deduction for restricted existential quantifier, changing both
formula and quantifier domain. Inference form. (Contributed by David
Moews, 1-May-2017.)
|
⊢ 𝐴 = 𝐵
& ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒) |
|
Theorem | ralbiia 2338 |
Inference adding restricted universal quantifier to both sides of an
equivalence. (Contributed by NM, 26-Nov-2000.)
|
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
|
Theorem | rexbiia 2339 |
Inference adding restricted existential quantifier to both sides of an
equivalence. (Contributed by NM, 26-Oct-1999.)
|
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
|
Theorem | 2rexbiia 2340* |
Inference adding two restricted existential quantifiers to both sides of
an equivalence. (Contributed by NM, 1-Aug-2004.)
|
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
|
Theorem | r2alf 2341* |
Double restricted universal quantification. (Contributed by Mario
Carneiro, 14-Oct-2016.)
|
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
|
Theorem | r2exf 2342* |
Double restricted existential quantification. (Contributed by Mario
Carneiro, 14-Oct-2016.)
|
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
|
Theorem | r2al 2343* |
Double restricted universal quantification. (Contributed by NM,
19-Nov-1995.)
|
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
|
Theorem | r2ex 2344* |
Double restricted existential quantification. (Contributed by NM,
11-Nov-1995.)
|
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
|
Theorem | 2ralbida 2345* |
Formula-building rule for restricted universal quantifier (deduction
rule). (Contributed by NM, 24-Feb-2004.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ Ⅎ𝑦𝜑
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
|
Theorem | 2ralbidva 2346* |
Formula-building rule for restricted universal quantifiers (deduction
rule). (Contributed by NM, 4-Mar-1997.)
|
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
|
Theorem | 2rexbidva 2347* |
Formula-building rule for restricted existential quantifiers (deduction
rule). (Contributed by NM, 15-Dec-2004.)
|
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
|
Theorem | 2ralbidv 2348* |
Formula-building rule for restricted universal quantifiers (deduction
rule). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon
Jaroszewicz, 16-Mar-2007.)
|
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
|
Theorem | 2rexbidv 2349* |
Formula-building rule for restricted existential quantifiers (deduction
rule). (Contributed by NM, 28-Jan-2006.)
|
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
|
Theorem | rexralbidv 2350* |
Formula-building rule for restricted quantifiers (deduction rule).
(Contributed by NM, 28-Jan-2006.)
|
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
|
Theorem | ralinexa 2351 |
A transformation of restricted quantifiers and logical connectives.
(Contributed by NM, 4-Sep-2005.)
|
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
|
Theorem | risset 2352* |
Two ways to say "𝐴 belongs to 𝐵." (Contributed by
NM,
22-Nov-1994.)
|
⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
|
Theorem | hbral 2353 |
Bound-variable hypothesis builder for restricted quantification.
(Contributed by NM, 1-Sep-1999.) (Revised by David Abernethy,
13-Dec-2009.)
|
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴)
& ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥∀𝑦 ∈ 𝐴 𝜑) |
|
Theorem | hbra1 2354 |
𝑥
is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM,
18-Oct-1996.)
|
⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) |
|
Theorem | nfra1 2355 |
𝑥
is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.)
(Revised by Mario Carneiro, 7-Oct-2016.)
|
⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
|
Theorem | nfraldxy 2356* |
Not-free for restricted universal quantification where 𝑥 and 𝑦
are distinct. See nfraldya 2358 for a version with 𝑦 and
𝐴
distinct instead. (Contributed by Jim Kingdon, 29-May-2018.)
|
⊢ Ⅎ𝑦𝜑
& ⊢ (𝜑 → Ⅎ𝑥𝐴)
& ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
|
Theorem | nfrexdxy 2357* |
Not-free for restricted existential quantification where 𝑥 and 𝑦
are distinct. See nfrexdya 2359 for a version with 𝑦 and
𝐴
distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
|
⊢ Ⅎ𝑦𝜑
& ⊢ (𝜑 → Ⅎ𝑥𝐴)
& ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
|
Theorem | nfraldya 2358* |
Not-free for restricted universal quantification where 𝑦 and 𝐴
are distinct. See nfraldxy 2356 for a version with 𝑥 and
𝑦
distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
|
⊢ Ⅎ𝑦𝜑
& ⊢ (𝜑 → Ⅎ𝑥𝐴)
& ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
|
Theorem | nfrexdya 2359* |
Not-free for restricted existential quantification where 𝑦 and 𝐴
are distinct. See nfrexdxy 2357 for a version with 𝑥 and
𝑦
distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
|
⊢ Ⅎ𝑦𝜑
& ⊢ (𝜑 → Ⅎ𝑥𝐴)
& ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
|
Theorem | nfralxy 2360* |
Not-free for restricted universal quantification where 𝑥 and 𝑦
are distinct. See nfralya 2362 for a version with 𝑦 and 𝐴
distinct
instead. (Contributed by Jim Kingdon, 30-May-2018.)
|
⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
|
Theorem | nfrexxy 2361* |
Not-free for restricted existential quantification where 𝑥 and 𝑦
are distinct. See nfrexya 2363 for a version with 𝑦 and 𝐴
distinct
instead. (Contributed by Jim Kingdon, 30-May-2018.)
|
⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
|
Theorem | nfralya 2362* |
Not-free for restricted universal quantification where 𝑦 and 𝐴
are distinct. See nfralxy 2360 for a version with 𝑥 and 𝑦
distinct
instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
|
⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
|
Theorem | nfrexya 2363* |
Not-free for restricted existential quantification where 𝑦 and 𝐴
are distinct. See nfrexxy 2361 for a version with 𝑥 and 𝑦
distinct
instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
|
⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
|
Theorem | nfra2xy 2364* |
Not-free given two restricted quantifiers. (Contributed by Jim Kingdon,
20-Aug-2018.)
|
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
|
Theorem | nfre1 2365 |
𝑥
is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
(Revised by Mario Carneiro, 7-Oct-2016.)
|
⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
|
Theorem | r3al 2366* |
Triple restricted universal quantification. (Contributed by NM,
19-Nov-1995.)
|
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑)) |
|
Theorem | alral 2367 |
Universal quantification implies restricted quantification. (Contributed
by NM, 20-Oct-2006.)
|
⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
|
Theorem | rexex 2368 |
Restricted existence implies existence. (Contributed by NM,
11-Nov-1995.)
|
⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
|
Theorem | rsp 2369 |
Restricted specialization. (Contributed by NM, 17-Oct-1996.)
|
⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
|
Theorem | rspe 2370 |
Restricted specialization. (Contributed by NM, 12-Oct-1999.)
|
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
|
Theorem | rsp2 2371 |
Restricted specialization. (Contributed by NM, 11-Feb-1997.)
|
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
|
Theorem | rsp2e 2372 |
Restricted specialization. (Contributed by FL, 4-Jun-2012.)
|
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
|
Theorem | rspec 2373 |
Specialization rule for restricted quantification. (Contributed by NM,
19-Nov-1994.)
|
⊢ ∀𝑥 ∈ 𝐴 𝜑 ⇒ ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
|
Theorem | rgen 2374 |
Generalization rule for restricted quantification. (Contributed by NM,
19-Nov-1994.)
|
⊢ (𝑥 ∈ 𝐴 → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
|
Theorem | rgen2a 2375* |
Generalization rule for restricted quantification. Note that 𝑥 and
𝑦 needn't be distinct (and illustrates
the use of dvelimor 1894).
(Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon,
1-Jun-2018.)
|
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
|
Theorem | rgenw 2376 |
Generalization rule for restricted quantification. (Contributed by NM,
18-Jun-2014.)
|
⊢ 𝜑 ⇒ ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
|
Theorem | rgen2w 2377 |
Generalization rule for restricted quantification. Note that 𝑥 and
𝑦 needn't be distinct. (Contributed by
NM, 18-Jun-2014.)
|
⊢ 𝜑 ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
|
Theorem | mprg 2378 |
Modus ponens combined with restricted generalization. (Contributed by
NM, 10-Aug-2004.)
|
⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)
& ⊢ (𝑥 ∈ 𝐴 → 𝜑) ⇒ ⊢ 𝜓 |
|
Theorem | mprgbir 2379 |
Modus ponens on biconditional combined with restricted generalization.
(Contributed by NM, 21-Mar-2004.)
|
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)
& ⊢ (𝑥 ∈ 𝐴 → 𝜓) ⇒ ⊢ 𝜑 |
|
Theorem | ralim 2380 |
Distribution of restricted quantification over implication. (Contributed
by NM, 9-Feb-1997.)
|
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
|
Theorem | ralimi2 2381 |
Inference quantifying both antecedent and consequent. (Contributed by
NM, 22-Feb-2004.)
|
⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
|
Theorem | ralimia 2382 |
Inference quantifying both antecedent and consequent. (Contributed by
NM, 19-Jul-1996.)
|
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
|
Theorem | ralimiaa 2383 |
Inference quantifying both antecedent and consequent. (Contributed by
NM, 4-Aug-2007.)
|
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
|
Theorem | ralimi 2384 |
Inference quantifying both antecedent and consequent, with strong
hypothesis. (Contributed by NM, 4-Mar-1997.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
|
Theorem | ral2imi 2385 |
Inference quantifying antecedent, nested antecedent, and consequent,
with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
|
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralimdaa 2386 |
Deduction quantifying both antecedent and consequent, based on Theorem
19.20 of [Margaris] p. 90.
(Contributed by NM, 22-Sep-2003.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralimdva 2387* |
Deduction quantifying both antecedent and consequent, based on Theorem
19.20 of [Margaris] p. 90.
(Contributed by NM, 22-May-1999.)
|
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralimdv 2388* |
Deduction quantifying both antecedent and consequent, based on Theorem
19.20 of [Margaris] p. 90.
(Contributed by NM, 8-Oct-2003.)
|
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralimdv2 2389* |
Inference quantifying both antecedent and consequent. (Contributed by
NM, 1-Feb-2005.)
|
⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
|
Theorem | ralrimi 2390 |
Inference from Theorem 19.21 of [Margaris] p.
90 (restricted quantifier
version). (Contributed by NM, 10-Oct-1999.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
|
Theorem | ralrimiv 2391* |
Inference from Theorem 19.21 of [Margaris] p.
90. (Restricted
quantifier version.) (Contributed by NM, 22-Nov-1994.)
|
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
|
Theorem | ralrimiva 2392* |
Inference from Theorem 19.21 of [Margaris] p.
90. (Restricted
quantifier version.) (Contributed by NM, 2-Jan-2006.)
|
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
|
Theorem | ralrimivw 2393* |
Inference from Theorem 19.21 of [Margaris] p.
90. (Restricted
quantifier version.) (Contributed by NM, 18-Jun-2014.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
|
Theorem | r19.21t 2394 |
Theorem 19.21 of [Margaris] p. 90 with
restricted quantifiers (closed
theorem version). (Contributed by NM, 1-Mar-2008.)
|
⊢ (Ⅎ𝑥𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓))) |
|
Theorem | r19.21 2395 |
Theorem 19.21 of [Margaris] p. 90 with
restricted quantifiers.
(Contributed by Scott Fenton, 30-Mar-2011.)
|
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
|
Theorem | r19.21v 2396* |
Theorem 19.21 of [Margaris] p. 90 with
restricted quantifiers.
(Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon,
30-May-2011.)
|
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
|
Theorem | ralrimd 2397 |
Inference from Theorem 19.21 of [Margaris] p.
90. (Restricted
quantifier version.) (Contributed by NM, 16-Feb-2004.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralrimdv 2398* |
Inference from Theorem 19.21 of [Margaris] p.
90. (Restricted
quantifier version.) (Contributed by NM, 27-May-1998.)
|
⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralrimdva 2399* |
Inference from Theorem 19.21 of [Margaris] p.
90. (Restricted
quantifier version.) (Contributed by NM, 2-Feb-2008.)
|
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
|
Theorem | ralrimivv 2400* |
Inference from Theorem 19.21 of [Margaris] p.
90. (Restricted
quantifier version with double quantification.) (Contributed by NM,
24-Jul-2004.)
|
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |