ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralya Structured version   GIF version

Theorem nfralya 2339
Description: Not-free for restricted universal quantification where y and A are distinct. See nfralxy 2337 for a version with x and y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
Hypotheses
Ref Expression
nfralya.1 xA
nfralya.2 xφ
Assertion
Ref Expression
nfralya xy A φ
Distinct variable group:   y,A
Allowed substitution hints:   φ(x,y)   A(x)

Proof of Theorem nfralya
StepHypRef Expression
1 nftru 1335 . . 3 y
2 nfralya.1 . . . 4 xA
32a1i 9 . . 3 ( ⊤ → xA)
4 nfralya.2 . . . 4 xφ
54a1i 9 . . 3 ( ⊤ → Ⅎxφ)
61, 3, 5nfraldya 2335 . 2 ( ⊤ → Ⅎxy A φ)
76trud 1237 1 xy A φ
Colors of variables: wff set class
Syntax hints:  wtru 1229  wnf 1329  wnfc 2148  wral 2283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1364  ax-ie2 1365  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2005
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1629  df-cleq 2016  df-clel 2019  df-nfc 2150  df-ral 2288
This theorem is referenced by:  nfiinya  3659
  Copyright terms: Public domain W3C validator