ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2w GIF version

Theorem rgen2w 2377
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rgenw.1 𝜑
Assertion
Ref Expression
rgen2w 𝑥𝐴𝑦𝐵 𝜑

Proof of Theorem rgen2w
StepHypRef Expression
1 rgenw.1 . . 3 𝜑
21rgenw 2376 . 2 𝑦𝐵 𝜑
32rgenw 2376 1 𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff set class
Syntax hints:  wral 2306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-gen 1338
This theorem depends on definitions:  df-bi 110  df-ral 2311
This theorem is referenced by:  fnmpt2i  5830  ixxf  8767  fzf  8878
  Copyright terms: Public domain W3C validator